<packd

AWS for System
Administrators

Build, automate, and operate scalable
cloud infrastructure on AWS

<> MARCEL NEIDINGER | PRASHANT LAKHERA

AWS for System Administrators
Second Edition

Build, automate, and operate scalable cloud
infrastructure on AWS

Marcel Neidinger

Prashant Lakhera

AWS for System Administrators
Second Edition
Copyright © 2025 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

The authors acknowledge the use of cutting-edge Al such as ChatGPT, with the sole aim of enhancing
the language and clarity within the book, thereby ensuring a smooth reading experience for the
readers. It’s important to note that the content itself has been crafted by the authors and edited by a
professional publishing team.

The views and opinions expressed in this book are those of the author and do not necessarily reflect
the official policy or position of any current, former, or future employer or affiliated organization.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Portfolio Director: Kartikey Pandey
Relationship Lead: Deepak Kumar
Project Manager: Sonam Pandey

Content Engineer: Arun Nadar
Proofreader: Arun Nadar

Technical Editor: Simran Ali

Copy Editor: Safis Editing

Indexer: Manju Arasan

Production Designer: Ganesh Bhadwalkar
Growth Lead: Amit Ramadas

First published: February 2021
Second edition: May 2025

Production reference: 2230525

Published by Packt Publishing Ltd.
Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK.

ISBN 978-1-83546-366-6

www .packtpub.com

http://www.packtpub.com

To my mom and dad - the most important writers in my life.

And to my (former) colleagues Julio, Andy, and Michat - I wouldn’t be where
I am today professionally without you.

Contributors

About the authors

Marcel Neidinger is a developer turned solutions architect with a focus on cloud networking. He holds
four AWS certifications, including SysOps Associate and Advanced Networking Specialty. Marcel has
a passion for automation and previously wrote a book about network automation in Python.

I want to thank my manager Philipp Knecht for supporting me in writing this book. Michael, Frederic,
Sven, Simon, Bernhard, Nikola, Christian, and Malte — thank you for your friendship and for bearing
with me during this time.

Prashant Lakhera (lakhera2015 on Twitter) is an X-RHCA (Red Hat Certified Architect) and a
seasoned Linux and open source specialist with over 15 years of enterprise open source experience.

Having a positive impact on the world is important to him, which is why he shares his knowledge
with others through his website, blog posts, and YouTube channel, which also helps him to dig deep
into topics and build on his expertise.

About the reviewer

Saurabh Dhawan is an AWS and GenAlI certified enterprise architect with over 20 years of IT
experience. He has first-hand knowledge of building cloud-native solutions and a number of years
of consulting experience.

Saurabh has worked in a number of companies across the world in various roles and is currently part
of the Enterprise Architecture team in a New Zealand government department. He also reviewed the
previous edition of this book.

I am grateful to Packt Publishing for the opportunity to review this book. I also want to extend my thanks
to everyone who contributes to my learning and growth every day—whether at home, at work, through
YouTube videos, web publishers, and more.

Table of Contents

Preface XV

Part 1: AWS Services and Tools

Setting Up the AWS Environment 3
Technical requirements 4 Deploying the template 14
Setting up the environment 5 Exploring the AWS CDK 15
Installing the AWS CLI 8 Installing the AWS CDK 15
Understanding the structure of AWS CLI Writing and deploying your first CDK project 16
commands J What is a construct in the CDK? 20
Introducing the Boto3 SDK for Python 11 .0 ducing Terraform 22
Installing Boto3 1 Installing Terraform 22
The difference between clients and resources 12 Creating resources in Terraform 22
What is CloudFormation? 12 Summary 24

Writing your first CloudFormation template 13

Protecting Your AWS Account Using IAM 25
Technical requirements 25 Whatare ARNs? 29
What is AWS IAM? 26 [AMgroups 30
What are IAM users? 26 Understanding IAM policies 31
Types of AWS services and its global Structure of IAM policies 32
infrastructure 26 Introduction to AWS managed policies 34

Creating a new IAM user using the AWS CLI 28 IAM policy evaluation 35

viii Table of Contents

Creating an IAM policy using the AWS CLI 37 Short introduction to AWS STS 43
Rewriting our policy as least privilege 38 Rotating JAM credentials using Boto3 44
Introduction to IAM roles 40 Summary 46
Creating an IAM role with Terraform 40

Part 2: Building Infrastructure

3

Creating a Data Center in the Cloud Using a VPC 49
Technical requirements 49 Creating an IGW, route table, and subnet

A VPC and its components 50 Assoclation 67
Creating a VPC using the Interconnecting VPCs via peering

AWS console 52 and Transit Gateway 69
Creating subnets in our VPC 53 Creating a peering between two VPCs 70
Creating an IGW in our VPC 56 What is AWS Transit Gateway? 73
Creating a route table 8 Programmatically verifying that VPC
Exploring network access control lists 61 flow lo gs are en abled 74
Creating a second VPC using Summary 77
CloudFormation 62 Join the CloudPro Newsletter with

Setting up the VPC and subnets 62 44000+ Subscribers 78
Scalable Compute Capacity in the Cloud via EC2 79
Technical requirements 80 Creating a cost alert using budgets 91
Setting up EC2 instances 80 Automatically shutting down instances 95
A few EC2 concepts 80 Identifying unattached EBS Volumes with boto3 97
Using the AWS Console to create an EC2 Summary 100
instance 80

Using CloudFormation to create an
EC2 instance 88

Table of Contents ix

Part 3: Scalability and Elasticity of
our Cloud Infrastructure

Increasing Application Fault Tolerance and

Efficiency with Elastic Load Balancing 103

Technical requirements 103 Handling HTTPS traffic

Understanding Elastic with our ALB 110

Load Balancing 104 Setting up a custom domain

What load balancer should I use? 106 name for our ALB 11

Setting up our environment 107 Requesting a new TLS certificate for our ALB 112

Setting up the ALB 108 Adding an HTTPS listener 114
Deploying an NLB in front of an ALB 116
Summary 121

Increasing Application Performance

Using AWS Auto Scaling 123
Technical requirements 124 Creating an ASG in the AWS console 132
When should we use auto scaling? ~ 124 Exploring scaling policies 137
Creating a launch template 126 Creating ASGs in Terraform 138
Creating a launch template in the Summary 144
AWS console 127

Scaling a Relational Database in the Cloud

Using Amazon Relational Database Service (RDS) 145
Technical requirements 146 Creating a PostgreSQL database in
What is Amazon RDS? 146 the AWS Management Console 147

Deleting a database in RDS 157

Table of Contents

Deploying an RDS instance with

Join the CloudPro Newsletter

Terraform 159 with 44000+ Subscribers 164
Summary 163

Managing Secrets and Encryption Keys with
AWS Secrets Manager and KMS 165
Technical requirements 166 Integrating Amazon RDS with AWS
Storing secrets with AWS Secrets Secrets Manager to rotate
Manager 166 database credentials 179
What is AWS Secrets Manager? 166 Handling enCI'YPﬁOIl keYS

Creating secrets in the CDK 167 with AWS KMS 184
Creating secrets in Terraform 170 What is KMS? 184
Accessing secrets from an AWS Lambda Changing an S3 bucket to use a CMK 185
fi i ing B

unction using Boto3 173 Summary 190
Part 4: Monitoring, Metrics, and

the Backup Layer

Centralized Logging and Monitoring with

Amazon CloudWatch 193
Technical requirements 194 Introduction to SNS 216
An introduction to CloudWatch Creating a CloudWatch metric alert that

for metrics 194 pushes a notification to SNS 219
Why do we need log management? 195 Sending SN notifications to Slack 222

Summary 228

An introduction to
CloudWatch for logs 197
Creating a log group in CloudWatch 198

Monitoring custom metrics and
sending log files using CloudWatch Agent 202

Table of Contents

Centralizing Cloud Backup Solutions 229
Technical requirements 230 S3life cycle policies to
Backups in AWS 230 transition data into S3 Glacier 239
Creating backups with AWS Backup 230 53 storage classes 239
Automating the creation of backups with Exploring bunker accounts for
Terraform and tags 231 backups 245
Summary 246
Disaster Recovery Options with AWS 247
Technical requirements 248 An introduction to disaster
Defining our disaster recovery recovery strategies 251
strategy 248 Backup and restore DR strategy 253
RPO and RTO - the key metrics Pilot Light 256
for DR 248 Warm standby 257
RPO 249 Multi-site active/active 258
RTO 250 Summary 260
Join the CloudPro Newsletter
with 44000+ Subscribers 260
Testing the Resilience of Your Infrastructure and
Architecture with AWS Fault Injection Service 261
Technical requirements 262 AWS FIS for chaos experiments 264
Introduction to chaos engineering Summary 276

and chaos experiments 262

Xi

xii

Table of Contents

Part 5: Deployments at Scale

Deploying Infrastructure Using CI/CD Pipelines 279
Technical requirements 279 Connecting your GitHub account 280
A short introduction to CI/CD 280 Setting up a Terraform backend 288
Automated deployment with Deploying your code 290
Terraform and AWS CodeBuild 280 Summary 300
Building Reusable Infrastructure-as-Code Components 301
Technical requirements 302 Building reusable components
An introduction to reusable in Terraform 304
components 302 Building reusable
components in CDK 312
Summary 321
Ensuring Compliance Using AWS Config and SCPs 323
Technical requirements 323 Using AWS Config to detect non-
An introduction to SCPs 324 compliant resources 340
Setting up an AWS organization 325 Summary 348
Join the CloudPro Newsletter
with 44000+ Subscribers 348
Operating in a Multi-Account Environment 349

Technical requirements 350
Designing AWS organizations 350
Creating an OU in Terraform 352

Including a previously created
OU in Terraform 356

Attaching an SCP to an OU with Terraform 357
Adding the exceptions OU 359

Table of Contents

Sharing resources within an

Enabling resource sharing

organization using Resource inside organizations 362
Access Manager 360 Sharing resources with Terraform 364
Enabling organizational resource Cross-account sharing for use cases

sharing in RAM 361 with small amounts of AWS accounts 367
Sharing subnets in our VPC via Terraform 361 Summary 369
End-to-End Deployment of an Application 371
Technical requirements 371 Summary 388
What we will build in this chapter 372 Stay Sharp in Cloud and

Implementing Single Sign-On (SSO) with DevOps - Join 44,000+

AWS Identity Center 374 Subscribers of CloudPro 389
Setting up the pipeline 383

Index 391
Other Books You May Enjoy 400

Xiii

Preface

Welcome to the fascinating world of systems operations — or SysOps - in AWS. AWS for System
Administrators, Second Edition is your introduction to deploying, automating, and operating workloads
in AWS. Over its 17 chapters, this book introduces you to the tools and techniques required to operate
workloads in the cloud.

After finishing this book, you’ll have explored the world of scalable compute, learned how to automate
the deployment of relational databases, set up a multi-account organization, and much more.

Throughout the book, you'll see hands-on examples of automating the deployment of these infrastructure
components through the use of Infrastructure-as-Code tools such as Terraform or CloudFormation.
You’'ll get architectural guidance and explanations for the central concepts of operating workloads
within AWS.

Who this book is for

This book is designed for technology professionals with some basic cloud experience who aim to
understand how to automate and operate software systems and their underlying infrastructure on AWS.

Whether you are a systems administrator, DevOps engineer, or solutions architect looking into getting
the most out of AWS, this book will enable you to better understand the challenges and the solutions
involved when running applications on AWS.

A basic understanding of cloud concepts and services within AWS as well as some familiarity with
IT tools such as Git and Terraform and a programming language such as Python is recommended.
But if you don’t have these prerequisites, the book offers explanations to bring you up to speed on
these concepts.

Use this book to get started on your journey to becoming a systems operator on AWS!

What this book covers

Chapter 1, Setting Up the AWS Environment, introduces you to the basics of setting up an account on
AWS as well as the Infrastructure-as-Code (IaC) tools we'll use throughout this book: Terraform,
CloudFormation, and AWS Cloud Development Kit (CDK).

Chapter 2, Protecting Your AWS Account Using IAM, explains the concepts of the Identity and Access
Management (IAM) service that is used throughout AWS for authentication and authorization.

XVi

Preface

Chapter 3, Creating a Data Center in the Cloud Using a VPC, covers the basic networking concepts of
the virtual private cloud (VPC) - your data center in AWS.

Chapter 4, Scalable Compute Capacity in the Cloud via EC2, looks at concepts of Elastic Compute
Cloud (EC2) - the AWS service to provision virtual machines within AWS.

Chapter 5, Increasing Application Fault-Tolerance and Efficiency with Elastic Load Balancing, explains
how we can use Elastic Load Balancing (ELB) to route traffic between multiple instances to increase
fault-tolerance and efficiency.

Chapter 6, Increasing Application Performance Using AWS Auto Scaling, covers how we can use Auto
Scaling Groups in AWS to automatically scale our compute up or down.

Chapter 7, Scaling a Relational Database in the Cloud Using Amazon Relational Database Service (RDS),
explains how to deploy an open source Postgres database using the Amazon Relational Database
Service (RDS) and explores the concept of managed services.

Chapter 8, Managing Secrets and Encryption Keys with AWS Secrets Manager and KMS, teaches you
how to handle secrets such as passwords or access tokens as well as the basic concepts of encryption
in the cloud.

Chapter 9, Centralized Logging and Monitoring with Amazon CloudWatch, explains how you can use
CloudWatch and SN for centralized logging, metrics, and alerting on AWS.

Chapter 10, Centralizing Cloud Backup Solutions, explains AWS Backup and how you can use this
service to implement backup plans.

Chapter 11, Disaster Recovery Options with AWS, explores the different options available to architect
resilient applications on AWS. The chapter also explains the key concepts of Recovery Time Objective
(RTO) and Recovery Point Objective (RPO).

Chapter 12, Testing the Resilience of Your Infrastructure and Architecture with AWS Fault Injection
Service, introduces you to chaos engineering and AWS Fault Injection Service (FIS) — a service that
lets you inject failures into your AWS-deployed applications to test their ability to withstand such
failures when they happen in production.

Chapter 13, Deploying Infrastructure Using CI/CD Pipelines, covers the topic of automated infrastructure
rollout based on IaC code that is stored in the version control system git.

Chapter 14, Building Reusable Infrastructure-as-Code Components, covers patterns and best practices
when building reusable components for your teams to scale IaC usage.

Chapter 15, Ensuring Compliance Using AWS Config and SCPs, introduces two different methods, a
proactive and reactive way, to block or detect the creation of infrastructure that is non-compliant with
your set of rules and requirements.

Preface

Chapter 16, Operating in a Multi-Account Environment, introduces AWS Organizations as a way to set
up the multiple AWS accounts usually required when operating a real-world application in the cloud.

Chapter 17, End-to-End Deployment of an Application, uses the tools, techniques, and concepts learned
throughout the book to cover the end-to-end deployment of an application. From account setup to
deployment pipeline and fault testing, this chapter shows how all the concepts introduced throughout
this book fit together.

To get the most out of this book

To make full use of this book, you should have a working knowledge of cloud computing concepts,
AWS services, and a basic understanding of computer networking concepts such as subnets, IP
addresses, and CIDR ranges.

Throughout this book, we'll use IaC tools such as CloudFormation, Terraform, and CDK to automate
the creation of our infrastructure and its maintenance. A working knowledge of at least one of these
tools as well as a working knowledge of the Python programming language is beneficial.

You'll also need an AWS account to which you can test the hands-on learning parts of this book. Be
advised that the examples in this book will incur a charge for the provisioned infrastructure.

An internet connection is required to interact with AWS and to download and install the required
tools (see the following table).

Software/hardware covered in the book OS requirement
AWS CLI Windows, Linux, or macOS
Git Windows, Linux, or macOS

Visual Studio Code (or similar code editor) | Windows, Linux, or macOS

Docker / Docker Desktop Windows, Linux, or macOS
Python Windows, Linux, or macOS
Node.js Windows, Linux, or macOS (optional)
Web browser Windows, Linux, or macOS
Terraform Windows, Linux, or macOS

The required software is listed in the Technical requirements section of the applicable chapter.

Download the example code files

You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/AWS-for-System-Administrators-Second-Edition. If there’s
an update to the code, it will be updated on the existing GitHub repository.

XVii

https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition
https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition

xviii

Preface

We also have other code bundles from our rich catalog of books and videos available at https: //
github.com/PacktPublishing/. Check them out!

Code in Action

The Code in Action videos for this book can be viewed at https://packt.link/vQuEI

Conventions used

There are a number of text conventions used throughout this book.

Code in text:Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “We’ll
modify the previously created setup . t £ file in order to create our ALB”

A block of code is set as follows:

tags = {
Name = "Main ALB"

}

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

def lambda handler (event, context) :

url = SLACK HOOK
msg - {
"channel": SLACK CHANNEL,
"username": "WEBHOOK USERNAME",
"text": event ["Records"] [0] ["Sns"] ["Message"],

"icon emoji": "",

}

Any command-line input or output is written as follows:

sudo /opt/aws/amazon-cloudwatch-agent/bin/amazon-cloudwatch-agent-ctl
-a fetch-config -m ec2 -c file:/opt/aws/amazon-cloudwatch-agent/bin/
config.json -s

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “Click the Configuration tab and then
select Environment variables in the left navigation”

https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://packt.link/vQuEI

Preface

Tips or important notes
Appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub . com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www . packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors . packtpub. com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on the site that
you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase
decisions, we at Packt can understand what you think about our products, and our authors can see
your feedback on their book. Thank you!

For more information about Packt, please visit packt . com.

Xix

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://packt.com

XX

Preface

Share Your Thoughts

Once you've read AWS for System Administrators, Second Edition wed love to hear your thoughts!
Please click here to go straight to the Amazon review page for this book
and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

https://packt.link/r/1835463665

Preface

Stay Sharp in Cloud and DevOps - Join 44,000+
Subscribers of CloudPro

CloudPro is a weekly newsletter for cloud professionals who want to stay current on the fast-evolving
world of cloud computing, DevOps, and infrastructure engineering.

Every issue delivers focused, high-signal content on topics like:

AWS, GCP & multi-cloud architecture

Containers, Kubernetes & orchestration

Infrastructure as Code (IaC) with Terraform, Pulumi, etc.
Platform engineering & automation workflows

Observability, performance tuning, and reliability best practices

Whether you're a cloud engineer, SRE, DevOps practitioner, or platform lead, CloudPro helps you
stay on top of what matters, without the noise.

Scan the QR code to join for free and get weekly insights straight to your inbox:

https://packt.link/cloudpro

XXi

https://packt.link/cloudpro

xXii

Preface

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781835463666

2. Submit your proof of purchase

3. That’s it! We'll send your free PDF and other benefits to your email directly

 https://packt.link/free-ebook/9781835463666
 https://packt.link/free-ebook/9781835463666

Part 1:
AWS Services and Tools

In this part, we'll look into the initial setup of your AWS environment and the installation of tools
such as Terraform, CDK, CloudFormation, and the AWS CLI that will be used throughout the book to
automate the deployment of your infrastructure. We'll then see how authorization and authentication
are handled within AWS through IAM.

This part contains the following chapters:

o Chapter 1, Setting Up the AWS Environment
o Chapter 2, Protecting Your AWS Account Using IAM

1
Setting Up the AWS
Environment

AWS and the cloud have fundamentally changed the way we operate infrastructure. Before the cloud,
most companies would operate data centers, where they would buy compute and network resources such
as servers, routers, and switches. All this hardware would then be set up, maintained, and operated.

In contrast, the cloud has not only changed the way we procure infrastructure (shifting from a model
with large capital expenditures for buying hardware to a pay-as-you-go model) but also changed the
way we operate this infrastructure. Instead of cabling servers and switches, everything in the cloud is
software-defined and just one application programming interface (API) call away.

This chapter starts off the journey to cloud-based systems operations by installing the tools that will be
used throughout the book. We begin by installing the AWS command-line interface (CLI), a versatile
tool that allows us to interact with resources in the AWS Cloud from our terminal.

Next, we'll set up Boto3, the software development kit (SDK) for the Python programming language
that will be used throughout the book to write automation scripts. And finally, we'll set up three
different infrastructure-as-code (IaC) tools. IaC allows us to specify our infrastructure (such as a
compute instance in Amazon EC2 or a bucket in Amazon S3) in code and thus treat our infrastructure
configuration as we would treat software.

First, we'll set up CloudFormation, the AWS-native tool for the declarative definition of our infrastructure.
Next, we'll set up the AWS Cloud Development Kit (CDK), which allows us to define our infrastructure
in a high-level programming language such as Python and then have it automatically translated into
CloudFormation. Lastly, we'll install Terraform from HashiCorp. Terraform is a declarative IaC tool
that, besides AWS, can also be used for other cloud providers such as Microsoft Azure or Google
Cloud Platform (GCP) as well as on-premises infrastructure.

Setting Up the AWS Environment

In this chapter, we're going to cover the following main topics:

o Setting up the environment

« Introducing Boto3 for Python
o What is CloudFormation?

« Exploring the AWS CDK

« Introducing Terraform

Technical requirements

Before following this section, please create an AWS account for yourself. You can sign up at https: //
aws .amazon . com. A basic understanding of AWS - for example, what a service is — will be beneficial
to the understanding of this chapter.

A fundamental understanding of Python will help with the programming-based sections of this
chapter. A basic understanding of TaC tools such as Terraform and the Linux command line will help
you with following along in this chapter.

The commands in this chapter assume that you are using a Linux-based operating system. We will
point out the Windows version where needed and possible.

You'll also need the following software installed on your system:

« Python version 3.8 or later

o Node.js version 14.15.0 or later

Both of these version requirements are at the time of writing in May 2024. You can check the following
links for the required versions:

o For Python: https://boto3.amazonaws.com/vl/documentation/api/latest/
guide/quickstart.html#install-or-update-python

o ForNodejs:https://docs.aws.amazon.com/cdk/v2/guide/getting started.
html#fgetting started prerequisites

All scripts from this chapter can be found at the following GitHub link:

https://github.com/PacktPublishing/AWS-for-System-Administrators-
Second-Edition.

The CiA video for this chapter can be found at https://packt.link/vi5WB

https://aws.amazon.com
https://aws.amazon.com
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html#install-or-update-python
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html#install-or-update-python
https://docs.aws.amazon.com/cdk/v2/guide/getting_started.html#getting_started_prerequisites
https://docs.aws.amazon.com/cdk/v2/guide/getting_started.html#getting_started_prerequisites
https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition
https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition
https://packt.link/vi5WB

Setting up the environment

Setting up the environment

AWS offers two ways of interacting with its services. One is the web interface, and the other is the
API The API is used by tools such as the AWS CLI or Terraform for programmatic interactions, while
the web interface allows us to configure resources by clicking. Throughout this book, we'll refer to
the web interface (the AWS Management Console, which you can find at ht tps: //console.
aws . amazon. com) as the AWS Console and will refer to the tool that you can use on the terminal
as the AWS CLL

The AWS CLI, Terraform, CloudFormation, and CDK all interact with the AWS services via the API
and need to authenticate themselves against the API with an AWS access key and a secret access key.

For our initial setup, we'll create an Identity and Access Management (IAM) user using the AWS
Console. We can then use the access key ID and secret access key from our newly created IAM user
to authenticate ourselves in the AWS CLI.

(i
Important note

For our first steps, we'll be using a simple IAM user with long-lived credentials and a broad
access policy that operates in the root account. Throughout the book, we'll tighten the security
to adhere to AWS best practices by tightening the policy to least-privilege access, using short-
lived credentials, and an AWS organization.

- J

Don’t worry if these words don’t mean too much to you right now. After finishing the book, you’ll
understand all these concepts. For now, let’s start the setup:

1. Navigateto https://console.aws.amazon.com and log in with your username,
password, and multi-factor authentication (MFA) details. Once you are logged in, search for
IAM and open up the Identity and Access Management (IAM) service. In IAM Dashboard,
click on Users in the left-hand navigation.

e 144 > Dashboard [ol)
=
Identity and Access < IAM Dashboard . 7
Management (LAM)
— . . I('- Y
([0 Secrcr e Security recommendations El (C) AWS Account
@ Hoctusar has MEA “rf.‘m"" i
[
Haing multi-factor suthemticaten (MRA] for the root user improves securiy for this account.
Dashbaard Account Allas
5 i £ Deactivate or delete acoess keys for roat user - Aoraga e e B Create
o s o ccess ey far e faat user, rsiead, use ccoss keys abached S~ 0 7
Lizer groups. ! unty. Slan-In URL for 1AM users In this account
11 hittps: A <101in 2/ 5MaZ00. 00
[miconsale
Roles —
Bl IAM resources (5]
: Hesc this AW Account T
dertity providers escurces in this AS Accoum Quick Links
Sebomit satiings User graups Users Roles Pallcles """“_':“ My sacurity credentials
raviders
Roat acosss managsment Naw P
Manags your acoess kays, mult-factar
¥ Access reports 1 5 69 26 0 (MFa} and othar
Access Anatyzer
Agchive rules
A What's new 2 Viewall
matyzars
¥ Tools (2

Settings

Credertial report

Updates for features in [AM

= AWS M anA0UNces sUpport far encrypted SAML azsertions. 2 moyis ape

& aws Fadapild 2anranees sineart far neniser 080 z2nd Ralld BEM IS0 randtine ke T i

Posicy simulataor

The simulatar pusiuztas she policks tas you

Figure 1.1 - Interface of the AWS IAM service in the AWS console

https://console.aws.amazon.com
https://console.aws.amazon.com
https://console.aws.amazon.com

6

Setting Up the AWS Environment

2. Click on Create User to create a new user. In the next window, specify a username (i.e., packt)
and click Next.

3. On the Set permissions screen (see the following figure), select Attach policies directly. Then,
search for and select an AWS managed - job function policy called AdminstratorAccess.

= M ¥ Users ¥ Cresteuser @@

st 1
@ Spocify user cetalls Set permissions
e Add e to an existing QUoun O £rRITE A Niw SOk LSIG groups |s a bess-practice way to manage usor's pamissians by job functians. Leam mare [
(@) Set parmisslons
Permissions options
el | & 2k user 10 grossp ¢ | € Artach posicies directy 1
- .

ara raris e W
e e S ESians by B

iy drartly tn A usen 5 s hest pereer,

e, tHached o pollze ans

e E Viztesd, Toen, 3
J
.) N =
Permissions policies (1/1362) () {_create policy 12)
e paliciies 1 Sttt o i
Fikter by Type
[adwint | s ¥ | 2 metches 1 @
B palicy name [3 a | Type - Attached entities b
[[g] = admirisTataricoas A5 manzged - jos fancion 7 |
O B 0 adminisrataccoess-amalify s manzged a
O m A5 managed a
o A AIE managed a

Figure 1.2 — Interface to set permissions in the AWS console

Important note

It is a best practice to assign the least privileges required to a user. You should thus rarely need
to assign Administrator access directly to a user. In the following chapters, we'll tighten this
security to adhere to this principle.

4. On the review page, click Create user to create the new user. You'll be taken back to the
overview of IAM users in your account.

5. To retrieve your credentials, click on the username you just created.

Setting up the environment

Identity and Access < - " -
Management (IAM) Ready to streamline human access to AWS and cloud apps?

VI — Ielentity Eenber is ennlibed, We recamemens] managing workFore wers' scoess ta AWS accoustts and eload application in ldentity Center,

a

) telateh how it works

Daskboand TR
Infa rute
¥ ACCESS Management r igentity witn long-term credentials th
User graups 3 &
Feles (] User name: & | Path v Group: T | Lastacthvity v MFA 7 | Passwordage ¥ Console lastsignein 7 | Accesskey 1D
Palki

RAGE 362035 MANACEMET o

Areess rapores

Qrganization scthity

Figure 1.3 - Overview of users in IAM

6. On the user details page, click on the Create access key link to create your access key. The link
is highlighted in red in the following figure.

e wm

Identity and Access < packt ..
Management [LAM)

v 3 pockt @B

e 1 Summary
230 Consale access Aceess key 1
10 anncavaziaen: I 1< pact Disabied

Dashbeard red

May 01, 2024, 1E:48 (UTC+0200)

torsale sign-n
* Accoss management

Ussr

[Permissions] Groups | Taws | Securityeredentisls Last Accessed

Permissions policies (1)

Farmalssians ars defined by polides attached 1o the user directly or Hheough gradps.

et ACcass AMANAGAMANT Haw Fillar by Ty

Al kypes % 1 i
¥ hceess reparts [Aty i} @
A atyzer 1| Policy name (2 & | mype v | dstached vin [4
hive rules v
O B ¥ administrasoracee: &% manaced - b functicn Direetly

tings
Credentla repert » Permissions boundary (not set)

Ohresariestinen setivite

Figure 1.4 — Details view of your newly created user

8

Setting Up the AWS Environment

On the Access key best practices & alternatives page, select the Command Line Interface
(CLI) use case and check the checkbox saying I understand the above recommendations and
want to proceed to create an access key.

Note that we'll be following the recommendations provided by AWS in the following chapters
and setting up short-lived tokens.

On the next page, click Create access key. You'll be shown an access key and a secret access

key. Copy both.

Important note

Note down your access key and secret access key. The secret access key can’t be retrieved again
after you leave this page.

Also, never commit these into a source code repository. Otherwise, people with access to your
source code repository could extract these credentials and use them to gain access to the AWS user.

Installing the AWS CLI

The AWS CLI is written in Python and you’ll thus need Python installed on your system:

L.

If you are on an X86 machine on a Linux-based operating system, run the following command
to download the latest version of the CLI:

curl “https://awscli.amazonaws.com/awscli-exe-linux-x86 64.zip”
-o “awscliv2.zip”

If you are on a Windows machine, use the following command:
msiexec.exe /i https://awscli.amazonaws.com/AWSCLIV2.msi

If you are on an ARM-based system on a Linux-based operating system, run the following command:

curl "https://awscli.amazonaws.com/awscli-exe-linux-aarché64.zip"
-o "awscliv2.zip"

Next, unzip the package:

unzip awscliv2.zip

Then, run the installer:

sudo ./aws/install

You can verify the installation by running this command:

aws --version

Setting up the environment

With the AWS CLI now installed on our system, we can use the aws configure command to set
up our user by using the credentials we retrieved from the AWS console in the previous steps.

To do this, run the following command that will ask you for some information such as the previously
retrieved AWS access and secret access keys. For the default region, use us-east-1 for now:

aws configure

AWS Access Key ID [None]: XXXXXXXXXXXX

AWS Secret Access Key [None]: XXXXXXXXXXXX
Default region name [None]: us-east-1
Default output format [None]: json

In this step, we defined the following information:

o AWS access key ID/AWS secret access key: These are the credentials used to authenticate the
API requests that the AWS CLI will make against the AWS services.

o AWS Region: This is the AWS region where our infrastructure is being deployed. We'll expand
more on the region concept in Part 2: Building Infrastructure, specifically, Chapter 3, Creating
a Data Center in the Cloud Using a VPC. For now, we set this value to us-east-1.

o Output format: This specifies how the CLI will format its output. We chose JavaScript Object
Notation (JSON).

To verify that all has worked correctly, you can run the following command. This will return your
user information to you:

aws sts get-caller-identity

The output of this command should look similar to the following:

{

"UserId": "<redacted>",
"Account": "<redacted>",
"Arn": "arn:aws:iam: :<redacteds>:<username>"

Understanding the structure of AWS CLI commands
The AWS CLI commands follow a set pattern that is split up into three or four parts:

o The command has this syntax:

aws command subcommand [options and parameters]

o All AWS CLI commands start with aws.

10

Setting Up the AWS Environment

o Next is the command or service. Usually, the command is the name of an AWS service. In our
previous example, this was st s, short for Secure Token Service. Other examples would be
the IAM service we previously used in the AWS Console.

o Next comes the subcommand or action. These actions map to API actions available for that specific
service. In our previous example, we used the get -caller-identity command, which maps
to the GetCallerIdentity APIaction documented on this page: https://docs.aws.
amazon.com/STS/latest/APIReference/API GetCallerIdentity.html.

If you need help with any actions/subcommands or want to get a list of all available actions, you can use
the help command, which gives you a list of all available services and global configuration options:

aws help
To get all available options for a service (i.e., STS), type the following:

aws sts help

To get help on a subcommand/action (i.e., the get-caller-identity subcommand), type
the following:

aws sts get-caller-identity help

This will return all information for this subcommand such as the required parameters or the attributes
that are returned to you (under OUTPUT).

(7
Important note

Some frequently used services (such as Amazon S3) have specific shorthands (such as aws
s3 1s tolist all S3 buckets). Other services might have multiple commands. For example,
Amazon SageMaker, a service used for machine learning projects, has aws sagemaker for
managing resources and aws sagemaker-runtime to interact with them.

- J

While the AWS CLI offers us a powerful way to interact with the AWS services from our terminal
and can easily be used to carry out a sequence of commands that would take many clicks in the AWS
Console, it is not the best choice for programmatic interaction when dealing with more complex
tasks. While we can use the AWS CLI in Bash scripts, these can get harder to read, write, and maintain
once we move from a script that runs one or two simple commands to more complex workflows that
potentially contain nestings and conditionals. In this case, our script would profit from being written
in a higher-level programming language such as Python.

In this section, we learned how to set up the AWS CLI environment and also understood the basic
structure of the commands. Next, let’s look at how to set up the Boto3 SDK for Python for cases where
we require more complex scripts.

https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html

Introducing the Boto3 SDK for Python 11

Introducing the Boto3 SDK for Python

In this section, we'll be installing and setting up the AWS SDK for Python, called Boto3. Boto3 is a
powerful abstraction that allows us to interact with the AWS APIs from our Python code. This allows
us to write automation scripts for complex operations.

Installing Boto3
We can use the pip package manager to install the Python package. To do so, run the following command:
python3 -m pip install boto3

If you are using Windows as your operating system, you might have to use the following command instead:

python -m pip install boto3

Trivia

You might be wondering why this SDK is called bot o and not something like aws -python-
sdk. The library is named after a breed of dolphins (called boto) that are native to the Amazon
River. The creator of the original boto library, Mitch Garnaat, wanted a name that was “short,
unusual, and with at least some kind of connection to Amazon”” You can read more details —
including an explanation from Mitch Garnaat himself - in the following GitHub issue from which
the preceding quote is taken: https://github. com/boto/boto3/issues/1023.

. J

We can verify that the installation worked properly by writing a short Python script that uses boto3
to call the previously used sts service and the previously used GetCallerIdentity action.

Open up afile called test sts.py in a text editor of your choice (i.e., Visual Studio Code) and
copy the following lines of Python code:

import boto3

client = boto3.client ("sts")

resp = client.get caller identity()
print (resp)

Run this script by using the following command in your terminal:

python3 test sts.py

The result will contain the same information (UserId, Account, and Arn) as the CLI command
(aws sts get- caller-identity) we have seen before. In addition, bot o3 adds some
metadata around the request such as the HT TP status code, RequestId, and HTTP headers under
the ResponseMetadata field. We can ignore this additional information for now.

https://github.com/boto/boto3/issues/1023

12

Setting Up the AWS Environment

You might be wondering how boto3 has authenticated itself since nowhere in the script have we
passed any credentials. It can read the credentials written by the AWS CLI when you run the aws
configure command and use them.

Also, notice the similarity between the syntax in boto3 and the AWS CLI. In line two, we create a
client object to interact with the st s service. This is similar to how, in the AWS CLI, we specified the
sts service as our command. On the client object, we then call the get _caller identity()
function that maps to the GetCallerIdentity API action of the AWS STS service. In the AWS
CLI, this action was mapped to the get -caller-identity command. You can see how, coming
from the API action (i.e., GetCallerIdentity of the STS service), we can translate this into the
corresponding AWS CLI command (aws sts get-caller-identity) or corresponding
boto3 function call (get _caller identity () onthe sts client).

The difference between clients and resources

Boto3 gives you two different abstraction levels to interact with an AWS service. A resource, created
using the boto3 . resource ("<name of resources") code line and the client created using
theboto3.client ("<name of client>") code line.

A boto3 client is a low-level interface that maps closely to the API actions of the corresponding AWS
services. Resources, on the other hand, provide an object-oriented abstraction to some commonly used
AWS services. Not all AWS services have resources and the “AWS Python SDK team does not intend to
add new features to the resources interface in boto3” (see the documentation at this link: https://
boto3.amazonaws.com/vl/documentation/api/latest/guide/resources.
html#). We will thus primarily use clients throughout this book.

In this chapter, we have installed bot o3 and written our first script that interacts with the AWS APIs.
Throughout this book, we will use bot 03 whenever we have the need to write automation scripts.
Next, we will see how we can use CloudFormation to set up infrastructure programmatically.

What is CloudFormation?

While we could use the previously introduced AWS CLI or custom scripts using Python and Boto3 to
create our infrastructure - at scale — we would like a tool that takes care of things such as abstracting
the AWS API and keeping track of the state (maybe we want to modify an existing resource instead
of creating a new one). This is where an IaC tool such as CloudFormation comes into play.

CloudFormation allows us to declaratively define how we want our infrastructure to look (i.e., that we
want an S3 bucket named marcel-this-is-my-test-bucket) instead of having to imperatively
write a script that contains all the API actions needed to create an S3 bucket with that name.

CloudFormation templates are written in either YAML or JSON. Throughout this book, we'll use the
YAML version due to its brevity and readability.

https://boto3.amazonaws.com/v1/documentation/api/latest/guide/resources.html#
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/resources.html#
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/resources.html#

What is CloudFormation? 13

With CloudFormation being a fundamental AWS service, we don’t need to install anything. It can be
used with the previously installed AWS CLI or from the AWS Console.

Writing your first CloudFormation template
Let’s write our first CloudFormation template that will create an S3 bucket for us:

1. Open up afile called s3 -bucket . yml in an editor of your choice, such as Visual Studio
Code, Notepad++, or Vim.

2. First, define the version of the template to use:

AWSTemplateFormatVersion: "2010-09-09"

3. Next, define a description for our stack:

Description: "Simple stack to create an S3 Bucket"

4. We can next define the list of resources (for example, an S3 bucket or an EC2 instance) that
should be associated with this stack. Pay attention to the indention. Each resource has an
identifier (Ours3Bucket, in the following sample), Type, and Properties. We can
choose the identifier ourselves while Type and Properties are defined by the resource:

Resources:
OurS3Bucket:
Type: AWS::S3::Bucket
Properties:
BucketName: <insert unique bucket name>

The entire CloudFormation template should look like this:

AWSTemplateFormatVersion: "2010-09-09"
Description: "Simple stack to create an S3 Bucket"
Resources:
OurS3Bucket:
Type: AWS::S3::Bucket
Properties:
BucketName: <insert unique bucket name>

Notice that the name of your bucket needs to be globally unique. This is because all S3 accounts share
the same namespace for their S3 bucket names. An easy way to achieve uniqueness is by prefixing it
with your name or by prefixing or postfixing random numbers.

14

Setting Up the AWS Environment

Note

AWS has published conventions for naming buckets that you can find at the following
link: https://docs.aws.amazon.com/AmazonS3/latest/userguide/
bucketnamingrules.html.

Deploying the template

With our first template ready, we can use the AWS CLI to first verify and then deploy the template.
To verify it, make sure that you are in the same folder as the template, and then run the following:

aws cloudformation validate-template --template-body file://s3-bucket.
yml

The output should be an empty JSON with the description that you provided:
{

"Parameters": [],
"Description": "Simple stack to create an S3 Bucket"

}

With the validation done, we can next start the deployment of our template into a new stack by using
the following command:

aws cloudformation create-stack --stack-name first-stack --template-
body file://s3-bucket.yml

CloudFormation organizes resources into a stack. In this example, we used the previously created
CloudFormation template and created a stack based on it called £irst - stack. This stack contains
a resource of the S3 bucket type with the name and other properties we defined inside of the
CloudFormation stack. The resources are associated with this stack and any changes we want to make
to the resources (such as deleting the S3 bucket, creating another bucket, or changing its properties)
will result in a change to the stack.

To see the details, including the deployment status of a stack, we can use the AWS CLI and the
DescribeStacks API action. Run the following command to check whether your stack has
successfully deployed:

aws cloudformation describe-stacks --stack-name first-stack

Inside the output, you’ll find, among other information about your stack, the StackStatus
property. While your deployment is in progress, this status will be CREATE_IN PROGRESS. Upon
completion, the status changes to CREATE _COMPLETE, which means that all resources in the stack
have been created successfully.

https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html

Exploring the AWS CDK

You can also check this by running a CLI command to list all S3 buckets in your account. Run the
following command, where you should find the bucket we just created via CloudFormation:

aws s3 1s

One benefit of the IaC approach is that we can easily delete resources. In the case of CloudFormation,
we just delete the stack, which then deletes all resources associated with it. To do so, run the following:

aws cloudformation delete-stack --stack-name first-stack

Important note

Some resources, such as S3 buckets, have deletion policies that prevent them from being
deleted unless certain conditions (such as the bucket being empty in the case of an S3 bucket)
are met. You can configure these when creating the resource. Only set the deletion policy of a
bucket to be deleted, even when objects are in it, if you are 100% sure that you won't need the
data in that bucket.

- J

In this section, we have seen how we can use CloudFormation and its templates — written in either
YAML or JSON - to declare the infrastructure we want. While these templates can be short and easy to
understand for simple infrastructure, such as creating a single S3 bucket, large-scale infrastructure can
become cumbersome in CloudFormation due to its low-level nature. You can think of CloudFormation
as a low-level programming language. While it is possible to write all our code in such a language, it
gets verbose and error-prone. Similar to how modern high-level programming languages abstract a
lot of the underlying mechanisms of a computer (such as memory allocation), we can use the AWS
CDK to do the same with CloudFormation.

Exploring the AWS CDK

With the CDK, we describe our infrastructure using constructs in a high-level programming language
such as Python, Java, or TypeScript. This then gets compiled into CloudFormation templates for us.

Installing the AWS CDK

In order to use the CDK - regardless of which of the offered programming languages you want to
use — you'll need Node.js installed. We can then use the node package manager (npm) to install the
latest version of the CDK.

The following command will install cdk as a global package:

npm install -g aws-cdk

15

16

Setting Up the AWS Environment

You can check that cdk is installed properly by running the following command:

cdk version

Important note

Regardless of the fact that we’ll be using Python to describe our CDK project, we still need to
have Node.js installed since the core of CDK is written in JavaScript.

At the time of writing (May 2024), the CDK supports the following programming languages:

o TypeScript

o JavaScript

« Python
o Java

o« C#

« Go

To limit the number of languages used in this book, we’ll use Python.

(1
How can CDK support different languages?

You might be wondering how CDK is able to support different languages. To do this, CDK
leverages an open source project called jsii (see ht tps://github.com/aws/jsii). With
this, you can write code (such as the underlying components of the CDK) in JavaScript and then
generate language-specific bindings in different languages (such as Python) for it. Language-
specific here refers to the fact that the bindings generated by jsii take language-specific
patterns (such as keyword arguments in Python or the builder pattern in Java) into account.
. J

If youre curious to know how this works exactly, you can have a look at the official documentation
of jsiiathttps://aws.github.io/jsii/.

Writing and deploying your first CDK project

With the CDK installed, we can start our first CDK project:

1. Create a new folder called £irst - cdk-stack and navigate into it by running the
following command:

mkdir first-cdk-stack && cd first-cdk-stack

https://github.com/aws/jsii
https://aws.github.io/jsii/

Exploring the AWS CDK

Initiate a new CDK project (using Python as our language of choice):

cdk init app --language python

A virtual environment is a lightweight abstraction that lets us create isolated environments for
Python. Each of these environments has its own Python interpreter and packages. This way,
we can install different versions of the same Python package for different projects and avoid
version conflicts or version incompatibilities. To activate the Python virtual environment that

the CDK has created for you, run the following command:

source .venv/bin/activate

4. Ifyou are on Windows, run the following command:

.\.venv\Scripts\activate.bat

5. After activating the virtual environment, install the packages required by the project. You can

do this by running the following:

python3 -m pip install -r requirements.txt

-

Note

If you want to take a look at the packages that will be installed, you can open up the
requirements. txt file. In it, you will find an entry for each package that is being installed
— for example, aws-cdk-1ib==2.14. 0. Each entry has two components. The first is the
name of the package, and the second, after the two = signs, is the version of the package that
is being installed.

J

Now, we can get started on defining our infrastructure. Inside the first cdk_stack folder, you'll
find a file called first_cdk_stack_stack.py. Open this file in a code editor of your choice
(i.e., Visual Studio Code).

The file should look like this:

from aws_cdk import (
Duration,
Stack,
aws sgs as sgs,
)
from constructs import Construct
class FirstCdkStackStack (Stack) :

def init (self, scope: Construct, construct id: str, **kwargs)
-> None:

super (). init (scope, construct id, **kwargs)
The code that defines your stack goes here

17

18

Setting Up the AWS Environment

As you can see, the concept of a stack we have previously seen in CloudFormation is also present
in the CDK. In Python, a stack is a class that inherits from the aws_cdk . Stack class (the
FirstCdkStackStack class on line 8 in the preceding example). Inside of the constructor of the

example resource

queue = sgs.Queue (

self, "FirstCdkStackQueue",

visibility timeout=Duration.seconds (300),
#)

class (line 10 in the example), we can then define our stack by using constructs.

Let’s first recreate our bucket example from CloudFormation in the CDK before diving into an

explanation of what a construct in CDK is:

L.

The AWS CDK splits its constructs into different modules that we need to import. Modify the

import on the first line to look like the following:

from aws_cdk import (
Stack,
aws_s3 as s3

)

from constructs import Construct

With the s3 module imported, we can now create our bucket. Insidethe init method,

define a new bucket:

bucket = s3. Bucket (self, "my-first-bucket", bucket
name="<insert-unique-bucket-name>")

Your entire code should look like this:

from aws_cdk import (

)

Stack,
aws_s3 as s3

from constructs import Construct
class FirstCdkStackStack (Stack) :

def init (self, scope: Construct, construct id: str, **kwargs)

-> None:

super (). init (scope, construct id, **kwargs)
The code that defines your stack goes here
bucket = s3.Bucket (self, "my-first-bucket", bucket

name="<insert-unique-bucket-name>")

Exploring the AWS CDK

The first argument passed to the Bucket constructor is the scope that this resource should be associated
with. In this instance, we are associating the newly created bucket with the FirstCdkStackStack
stack and thus using the self keyword in Python. Next, we pass an 1d string that, together with
some random numbers and letters, will be used as the resource identifier in our rendered cloud
formation template.

Following these required arguments, we can use Python keyword arguments to set the properties, such
as the bucket name, which we would normally set inside the Properties section in CloudFormation.

In order to deploy our previously created application, we need to bootstrap our environment. This
needs to be done once per account and region. The bootstrapping deploys some basic resources needed
by the CDK into your account. Inside your project folder, run the following:

cdk bootstrap

As mentioned previously, the CDK provides an abstraction over CloudFormation and ultimately
translates into CloudFormation. We can use the synth command to show the CloudFormation
template that will be rendered from our CDK code.

Run the following command and scroll through the generated template:

cdk synth

Among other things, you should find a resource of the AWS : : S3 : : Bucket type with the name you
specified in your CDK code (line 15 in the complete code).

We can now go ahead and start deploying the stack we just created by running the deploy command,
as follows:

cdk deploy

Similar to what we just did manually, CDK now synthesizes (or translates) the CDK code into a
CloudFormation template and then deploys this CloudFormation template.

During the deployment, you can see the progress of your deployment in the output of the cdk
deploy command, as shown in the following figure.

FirstCdkStackStack: deploying... [1/1]
FirstCdkStackStack: creating CloudFormation changeset...
i 1 @3/3)

7:32:42 PM | (| AWS::CDK::Metadata |

Figure 1.5 - Progress of the CDK deployment shown on the command line

19

20

Setting Up the AWS Environment

Once the command is done, it'll show the Amazon Resource Name (ARN) of the CloudFormation
stack that was just deployed as well as the total time this took.

You can check that the bucket was created by running the aws s3 1s command again.

If you want to remove all resources created by the CDK, you can use the cdk destroy command.
This command will trigger a deletion of all the resources associated with your stack.

Additional information

Many CDK constructs will let you set a removal policy. Removal policies govern how resources are
handled if a user runs the cdk destroy command mentioned previously. To be more precise, the
removal policy governs how a resource is treated when it is no longer managed by CloudFormation.
Remember that the CDK just generates CloudFormation code.

There are three reasons why a resource might no longer be under the management of CloudFormation:
if the resource is removed from the template, if the resource requires a change that cannot be handled
in place and thus the resource is deleted and recreated, or if the entire stack that the resource was
part of is deleted.

Especially for resources such as S3 buckets, which might potentially contain irreplaceable data, we
might want to control whether the bucket is truly removed in order to prevent accidents where a
wrongly configured script triggers the deletion of a bucket.

There are four different removal policies:

o DESTROY will trigger the deletion of the resource once it is no longer managed by CloudFormation.

o RETAIN means that the resource will be kept in the account. This is the default policy for S3
buckets created with the L2 construct we used previously.

o« RETAIN ON UPDATE OR_DELETE means that resources that were in use will be retained
while unused resources will be deleted.

o SNAPSHOT is a removal policy that is only available for some resources (such as databases)
where — before deletion - a snapshot is taken so that the data can be restored.

What is a construct in the CDK?

In the previous section, we used the S3 Bucket construct to create a new bucket. But what exactly
is a construct?

Constructs are the way that the CDK uses to abstract resources. They can be separated into three
different levels called layer 1, layer 2, and layer 3 - or shorter, L1, L2, and L3.

Exploring the AWS CDK

Let’s learn more about these:

Layer 1 construct: This is a one-to-one mapping to a resource inside of CloudFormation.
Every resource in CloudFormation (i.e., the previously used AWS : : S3 : : Bucket resource in
CloudFormation) has a corresponding L1 construct in CDK. These L1 constructs are prefixed
with C£n to indicate their L1 status. So there is a CfnBucket construct.

Layer 2 construct: However, we didn’t use the CEnBucket construct to create our bucket in the
previous example. Instead, we used a layer 2 construct called Bucket. While L1 constructs are
automatically generated based on CloudFormation, L2 constructs are hand-crafted by humans.
They still map to a resource (such as a bucket) but offer more abstraction and functions for
typical operations.

Let’s say I want to grant a different IAM user called marcel read access to the bucket. With
CloudFormation or L1 constructs, this is an involved piece of code (you can see an example of
the CDK and CloudFormation required in the repository here: https://github.com/
PacktPublishing/AWS-for-System-Administrators-Second-Edition).
With the CDK, we can do it in two lines of code:

user = iam.User.from user name ("marcel")
bucket.grant read (user)

Underneath, the grant _read () function defines a least-privilege policy that grants read
access to the user identified by the name marcel.

Layer 3 construct: While a layer 2 construct already offers a lot of useful abstraction, it is still
usually mapped to a resource (such as a bucket) in AWS. Layer 3 constructs build on top of
layer 2 and layer 1 constructs to deploy patterns. A layer 3 construct might implement a pattern
such as a load-balanced application running on Amazon Elastic Container Service (ECS).
Such a pattern might combine tens or even a hundred different resources.

-

Note

The preceding example mentioned does exist in the CDK. Have a look at the
ApplicationLoadBalancedFargateService construct if you are curious. The
docs are available here: https://docs.aws.amazon.com/cdk/api/v2/python/
aws_cdk.aws_ecs_patterns/ApplicationLoadBalancedFargateService.
html#applicationloadbalancedfargateservice.

J

We will talk more about how we can use these concepts to design reusable components in Chapter 15.

In the previous sections, we have seen how we can leverage tools such as the AWS-native CloudFormation
to declare the infrastructure we want. However, one of the drawbacks of using such a tool is that it
is native to AWS. This can have its drawbacks when operating in a multi-cloud environment. This is
where the IaC tool Terraform by HashiCorp comes into play.

21

https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition
https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition
https://docs.aws.amazon.com/cdk/api/v2/python/aws_cdk.aws_ecs_patterns/ApplicationLoadBalancedFargateService.html#applicationloadbalancedfargateservice
https://docs.aws.amazon.com/cdk/api/v2/python/aws_cdk.aws_ecs_patterns/ApplicationLoadBalancedFargateService.html#applicationloadbalancedfargateservice
https://docs.aws.amazon.com/cdk/api/v2/python/aws_cdk.aws_ecs_patterns/ApplicationLoadBalancedFargateService.html#applicationloadbalancedfargateservice

22

Setting Up the AWS Environment

Introducing Terraform

Terraform is declarative. This means that we declare a resource (such as our S3 bucket) and Terraform
then figures out the required API actions to create this resource. To describe the resources, Terraform
uses its own language called HashiCorp Configuration Language (HCL) or, optionally, JSON. We'll
be using HCL throughout this book as it offers a more concise way to write our Terraform code as
well as additional abilities such as adding comments to our code.

Terraform uses providers (usually written in Go) to translate the resources and changes defined in your
Terraform code into API calls to AWS. The benefit of Terraform is that there are providers not only
for AWS but also for other hyperscalers such as Microsoft Azure and GCP, as well as other providers.

This means that you can use the same language (HCL) and the same technology (Terraform) to

describe your resources in different cloud providers.

Installing Terraform

To install Terraform, find the appropriate package for your system on the download page (https://
developer.hashicorp.com/terraform/install). Either use your systems package
manager (as described on the page) to install Terraform or download the appropriate . zip file for
your operating system and processor.

Verify that your installation was successful by running the following command:

terraform version

Creating resources in Terraform

To create our first resource, we need to create a . t £ file that contains the definitions of our resources.
Create a new folder called my-first-tf and navigate into it. Inside the folder, create a new file
called s3-bucket . t £ and write the following code:

provider "aws" {

region = "us-east-1"
resource "aws_s3 bucket" "example" {
bucket = "<insert-unique-bucket-name>"

Inside this file, we have two fundamental concepts of Terraform - the provider and the resource:

o Provider: The provider block (lines 1 to 3) defines that we want to use the aws provider. We
additionally pass information about what region (us-east - 1, in the example) we want to use.

« Resource: Next, we define an aws_s3 bucket resource using a resource block. Resources
that are provided by the aws provider are prefixed with aws_. In the example, we use this to
create a bucket. You can see that we also define a logical name, in this case, example.

https://developer.hashicorp.com/terraform/install
https://developer.hashicorp.com/terraform/install

Introducing Terraform

In order to create the bucket from this simple example, we'll need to first initiate terraform. This
is done by running the init command:

terraform init
This downloads the latest AWS provider and initiates our project.
Next, we can use the plan command to show what actions Terraform would like to perform:

terraform plan -out tfplan

At the bottom of the output, you’ll see a summary of the resources Terraform plans to add, change,
or destroy:

Plan: 1 to add, 0 to change, 0 to destroy.
At the top, you can see a list of all the actions Terraform plans to take:
o A + sign indicates a resource or property being created

o A -sign indicates a resource or property being deleted

o A ~sign indicates a resource or property being modified

By using the -out tfplan flag, we have written the plan into a file called t fplan. We can use
this file to now apply the changes. This is done using the aptly named apply command in Terraform.
Run the following command:

terraform apply tfplan

Terraform will show you a log of resources (in this case, only the one s3 bucket resource) that are
being created, as well as, after completion, a summary of the number of resources that were added,
changed, or deleted.

(1
Note

Naming the file containing your plan t fplan has become a typical convention but is not
a must. This convention is mentioned in the documentation from HashiCorp. You can find
more information at https://developer.hashicorp.com/terraform/cli/
commands/plan under Other options.

- J

You can once again verify that the bucket was created using the aws s3 1s command:

aws s3 1s

23

https://developer.hashicorp.com/terraform/cli/commands/plan
https://developer.hashicorp.com/terraform/cli/commands/plan

24

Setting Up the AWS Environment

Terraform also offers a way to delete all resources associated with it. To do so, we can use the
destroy command:

terraform destroy

This command first prints a summary of all resources that are being destroyed and then asks for your
confirmation. When prompted, enter yes to destroy the previously created resources.

(R
Note

An important aspect of IaC tools such as Terraform that we have so far omitted is state
management. We have the configuration in this chapter; the state is saved in the same folder as
the Terraform code itself. This is fine for exploration but won't scale. We'll talk about strategies
and patterns to handle state management across teams in Chapter 14.

- J

In this section, we successfully installed Terraform and created our first small piece of code in HCL
that created an S3 bucket in AWS. Terraform is a widely used tool for implementing IaC, and we will
use it throughout this book together with CloudFormation and CDK.

Summary

In this chapter, we installed and set up the required tools such as the AWS CLI, the boto3 SDK for
Python, the AWS CDK, and Terraform. Using these tools, we wrote some simple scripts, templates, or
programs to create infrastructure following the IaC paradigm. We will use these tools in the coming
chapters to build our infrastructure.

In the next chapter, we'll see how the IAM service works and how we can use it to tighten security.

2
Protecting Your AWS Account

Using IAM

One of the biggest benefits of the cloud is its software-defined nature. In the previous chapter, we saw
how different tools such as Terraform or CloudFormation allow us to programmatically interact with
resources, such as an S3 bucket in AWS.

Another benefit of this software-defined nature is the fine-grained controls we can use for resources.
Since every interaction, from creating to modifying or deleting a resource, is an API call to AWS, we
can put fine-grained policies in place for what actions can be carried out by what user.

In this chapter, were going to cover the following main topics:
o What is AWS IAM?
o Understanding IAM users, policies, and roles

o Programmatically interacting with IAM using Boto3

Let’s get started!

Technical requirements

Before beginning this chapter, please create an AWS account for yourself. You can sign up athttps://
aws . amazon . com. You should also have basic knowledge as well as a working installation of both
Terraform and Boto3. We covered both of these in Chapter 1.

A basic understanding of Python will help with the programming-based sections of this chapter.
All scripts from this section can be found at the following GitHub link:

https://github.com/PacktPublishing/AWS-for-System-Administrators-
Second-Edition

https://aws.amazon.com
https://aws.amazon.com
https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition
https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition

26

Protecting Your AWS Account Using IAM

The CiA video for this chapter can be found at https://packt.link/fVgvE

What is AWS IAM?

Before we go deeper into creating users, groups, and policies, we'll start by introducing some basic
concepts of the Identity and Access Management (IAM) service. IAM provides two crucial security
components: authentication and authorization. Let’s learn more about them:

o Authentication: This identifies a user; it is the login, be it via a password or via an API token,
that gives the system the information that whoever is sending a request is the identity that
they are claiming to be. This chapter will show you how authentication is handled by IAM in
the context of AWS.

o Authorization: This defines what action a user is allowed to perform. In this chapter, we'll see
how AWS handles authorization using the IAM service.

Note

In this chapter, we'll be using IAM users in a single-account scenario. Chapter 17 will cover
scenarios that involve multiple AWS accounts as well as using federated access from another
identity provider to allow logging in to AWS.

What are IAM users?

An IAM user, as the name suggests, is a user that has access to your AWS account. Contrary to how
your personal GitHub account has a one-to-one relation between the user and the account (i.e., only
you are using your account), an AWS account can have many different users accessing it. You might
have an admin user who is allowed to perform all actions, a developer user who is allowed to start
new infrastructure, and an audit user who is only allowed to view but not create new resources within
your AWS account.

IAM users are a global resource. But what exactly does it mean for a resource or service to be global?
Before creating a new IAM user, let’s dive a bit deeper into different types of AWS services and pick
up some information on the way the AWS infrastructure is built along the way.

Types of AWS services and its global infrastructure

When dealing with the 200+ services, at the time of writing, that AWS offers, it is only natural for us
to think in categories. However, there are multiple ways to categorize them. When we look in the AWS
Console, we most often see them organized by categories such as Compute, Storage, or Machine Learning.

While this is a great separation for identifying a service that might be useful for solving a problem
we have, there is also a categorization based on service types. AWS has three different service types:
zonal, regional, and global services.

https://packt.link/fVqvE

What is AWS IAM?

To understand the different types of services, let’s take a step back and look into the way AWS organizes
its infrastructure. The basic building block of the AWS cloud is an Availability Zone, commonly
abbreviated to AZ. An AZ is made up of one or more data centers that have independent and redundant
networking and power.

Multiple AZs are then grouped together into a Region. Regions carry names that give an indication of
where, geographically speaking, the AZs of that region are located. For example, the central European
region is called eu-central -1 (Frankfurt). The AZs within a region then carry letters. Within
the Frankfurt region, which, at the time of writing, has three AZs, you have the eu-central-1a,
eu-central-1b,and eu-central-1lc AZs. The AZs within a region are geographically separated
by up to 100 kilometers. This allows for fault isolation in case of natural disasters such as flooding or
earthquakes while being close enough in terms of latency. The AZs of a region are connected to the
internet as well as the AWS backbone network via two transit centers. Figure 2.1 shows the schematics
of what an AWS Region looks like.

Transit ; : E
center ' \ !
’

Datacenter Data center

Transit
center

Data center

Figure 2.1 - Schematic of a Region with four AZs (source: https://docs.
aws.amazon.com/whitepapers/latest/aws-fault-
isolation-boundaries/availability-zones.html)

One or more regions then make up a partition. The most common partition is the partition containing
all the commercial regions (such as us-east -1, eu-central-1, etc.). This partition is the aws
partition. Partitions are separated and have their own IAM. This means that a user that was created in
a commercial region within the aws partition (assuming it is allowed by a policy) can create resources
in all regions within that partition. This user can’t interact with resources in regions of a different
partition, such as the AWS GovCloud regions (the aws -us-gov partition).

27

https://docs.aws.amazon.com/whitepapers/latest/aws-fault-isolation-boundaries/availability-zones.html
https://docs.aws.amazon.com/whitepapers/latest/aws-fault-isolation-boundaries/availability-zones.html
https://docs.aws.amazon.com/whitepapers/latest/aws-fault-isolation-boundaries/availability-zones.html

28

Protecting Your AWS Account Using IAM

One final concept is the separation between control planes and data planes. A control plane provides
the APIs to administer (create, read, update, or delete) a resource while the data plane provides the
primary function of the service. Taking our previous example of creating a bucket in S3: The action
of creating the bucket is handled by the control plane while the operation of putting an object into
the bucket is handled by the data plane.

e N
Note

We have deliberately left out AWS Local Zones and AWS Outposts as well as Points of Presence
(PoPs). You can find more information on these in the AWS whitepaper on fault isolation
boundaries (https://docs.aws.amazon.com/whitepapers/latest/aws-
fault-isolation-boundaries/availability-zones.html).

. J

Now that we have an understanding of how AWS infrastructure is built up, we can come back to
the topic of service types. As previously mentioned, there are three service types that map into the
infrastructure concepts.

A zonal service operates independently inside the AZs. This means that every AZ has its own data
plane as well as an AZ-specific control plane. In addition to the AZ-specific control plane, we have
a regional control plane to control actions that need to be coordinated between multiple AZs. An
example of a zonal service is EC2. When launching a new instance, we can specify which AZ to launch
into. We'll talk more about the implications of this when it comes to disaster recovery and resiliency
in Chapter 12.

A regional service operates within a region. A service such as Amazon DynamoDB abstracts the
underlying zonal concepts and provides a region-specific endpoint. The control and data planes are
specific to a region.

And finally, a global service has a control and data plane that isn’t specific to a region. These services
have a control plane in one region and a data plane that is spread across regions. The most common
examples of a global service are IAM and Route 53. When selecting one of these services in the AWS
Console, the region indicator at the top right will show Global.

Creating a new IAM user using the AWS CLI

To create a new user in IAM from the CLI, we can use the create-user command. Type the
following command to create a new user with the name packt -user:

aws iam create-user --user-name packt-user
"User": {
"Path": II/II’
"UserName": "packt-user",
"UserId": "<redacted>",

https://docs.aws.amazon.com/whitepapers/latest/aws-fault-isolation-boundaries/availability-zones.html
https://docs.aws.amazon.com/whitepapers/latest/aws-fault-isolation-boundaries/availability-zones.html

What is AWS IAM? 29

"Arn": "arn:aws:iam::<redacted>:user/packt-user",
"CreateDate": "2024-06-01T15:08:14+00:00"

}

The output of the command has the following components:

« Path is the path of the username, defaulting to /.
o UserName is the name of the user we have provided.
o UserIdisa generated user ID that lets us identify the user.

o Arnisthe Amazon Resource Name (ARN) of our user. The redacted part will show your
account ID.

e CreateDate indicates when the user was created.

What are ARNs?

In the previous section, we saw that an IAM user has an ARN that can be used to uniquely identify
the resource. ARNs play a central part in IAM policies, and their format follows a general form. The
exact format depends on the resource:

arn:<partitions>:<services:<regions>:<account-ids>:<resource-id>

or

arn:<partitions>:<services:<regions>:<account-ids>:<resource-
type>/<resource-id>

or

arn:<partitions:<services:<regions>:<account-id>:<resource-
types>:<resource-id>

Let’s have a look at the different components:

o partitionisthe previously mentioned group of AWS regions. In the case of the IAM ARN
we see in the previous code, this is aws.

o« service is the AWS service, such as IAM or S3.
o region isthe AWS Region, for example, us-east-1.
e account -1id identifies the account that owns this resource.

o resource-type is the type of resource that is identified by this ARN. In our example, this
is the user.

30

Protecting Your AWS Account Using IAM

o resource-idisaunique identifier. The form of this identifier depends on the service and
resource. In the case of the IAM user, it is the user name. Other services might use numbered
IDs or UUIDs here.

You might be wondering how the ARN squares with the previously introduced concepts of global
services. The resources of these services are not region-specific and thus we can't specify a region
within the ARN. The ARN simply doesn’t have a region within it. As you can see in the ARN of your
previously created IAM user, there are two columns after the service identifier.

Notably, ARNs support wildcards. Let’s say we wanted to have an ARN that specifies all users within
an account, we could do this by using the * wildcard. So the ARN for all users in an account (with
the exemplary account - id value of 12345678910) would be the following:

arn:aws:iam: :12345678910:user/*

This can become useful when assigning policies to a collection of resources.

IAM groups

We previously talked about how you might want to have an admin user, a developer user, and an
audit user with different sets of permissions. The idea of separating by user might be fine for a very
small account but what if your team is growing? Youd either have to share the credentials of your
developer account with all developers in the team or attach the same policies, thus giving the same
rights, manually. This becomes cumbersome when a user changes teams (for example, a DevOps
engineer becoming a developer) and we need to rearrange all permissions.

Instead of sharing credentials or manual assignment, we can use IAM groups to group users by their
function. Instead of then assigning a policy, and thus rights, to the user, we assign the policy to the
group. If a user is in the group, they have all the rights from all the policies attached to the group. If
we move a user out of the group, they no longer have that access.

Note

IAM groups are not real identities that can be mentioned in a permission policy. It’s an
administrative vehicle that allows us to attach the same policy to a group of IAM users.

Creating a new IAM group
We can use the create-group command to create a new IAM group called Ops:

aws iam create-group --group-name Ops

Understanding IAM policies

This command will output the following JSON:

{
"Group": {
"Path": "/",
"GroupName": "Ops",
"GroupId": "<redacted>",
"Arn": "arn:aws:iam::<redacted>:group/Ops",
"CreateDate": "2024-06-01T15:33:49+00:00"
}
}

The output is similar to what we saw when creating a new user. It contains the information (such as
our provided name) of the newly created group resource as well as some meta information such as
creation date and time.

Adding a user to a group

We can now also add the previously created IAM user, packt -user, to the Ops group. To do this,
we use the add-user-to-group command:

aws iam add-user-to-group --user-name packt-user --group-name Ops

This command has no output.

So far, we have learned how to create new users and how we can categorize them into groups. However,
these newly created users do not have the right to do anything so far. In order to allow them to perform
actions within our AWS account, we need to attach a policy that allows them to perform this action.
Before we can attach policies, we need to understand them. Let’s do that next!

Understanding IAM policies

An IAM policy is a JSON-formatted document that specifies the actions on what resources and under
what conditions a user or role can perform. On every request to the AWS API, the IAM policy engine
evaluates whether the caller has the required permissions to carry out the operation. Thinking back
to the What is AWS IAM? section, this is the authorization of the request.

Note

By default, all requests are implicitly denied and an IAM identity (user, role, or group) has no
permissions or policies attached to it.

31

32

Protecting Your AWS Account Using IAM

AWS has four types of policies:

o Identity-based policies: These grant permission to an IAM identity (a user, group, or role).

o Resource-based policies: These grant permission to access a resource, such as an S3 bucket or
arole, to a principal (i.e., another AWS service).

o Permission boundaries: These define the maximum permissions (i.e., the boundaries) that
can be granted with an identity-based policy.

o Organizational SCPs: Short for service control policies, these can be used to restrict what
kind of permissions can be granted in AWS Organizations. We will learn more about these
concepts in detail in Chapter 15.

Now that we are acquainted with the basics of IAM policies, let'’s move on to understanding their
core aspects.

Structure of IAM policies
Each statement of an IAM policy follows the same structure and, in turn, has four main parts, as follows:

o Effect: This is either Al1ow or Deny and specifies whether the following actions should be
allowed or denied.

e Action: This is the list of actions that can be carried out. Each API operation within AWS
is defined by a string that follows the same format. It is the service name, for example, s3,
followed by a column and the name of the API action, for example, GetObject. So, the string
identifying the action to get an object from S3 is s3 : GetObject.

o Resource: This defines what resources the previously mentioned actions are allowed or denied.
To stay within the example of S3, this could be the ARN of a single object within a bucket
(arn:aws:s3:: :examplebucket/myobject) or we can use a wildcard to allow access
to all objects in a bucket (arn:aws:s3: : :examplebucket/*).

« Condition: This is an optional construct that lets us specify conditions under which the access
should be denied. For example, we can use this to allow access to an object in S3 only from a
specified set of source IPs:

"Condition": ({
"NotIpAddress": {
"aws:SourceIp": [

"192.0.2.0/24",
"203.0.113.0/24"

Understanding IAM policies

Combining all of this, our IAM policy will look like the following example:
{

"Statement": [{
"Effect":"effect",
"Action":"action",
"Resource": ["arn"],
"Condition": {

"condition": {
"key":"value"

The following is a real example of a policy that blocks traffic to an S3 bucket unless the traffic is
coming from a specific IP. To achieve this, we use the Condition construct together with the
aws : SourceIp condition:

{
"Version": "2012-10-17",
"Statement": [
{
"Sid": "Stmtl1l604259864802",
"Action": "s3:*",
UEffectl:NlDenylly
"Resource": "arn:aws:s3:::myexamplebucket/*",
"Condition": [{
"NotIpAddress": {
"aws:SourcelIp": "192.168.1.10/24"
}
11,
}
]
}

As you can see in the example, we also need to specify a Version number. This is not the version of
your policy but rather the version of the AWS policy language. As of the time of writing, the current
version of the policy language is 2012-10-17 and it is the one that should be used for writing
your policies. In very old code bases or very old blog posts, you might still see the previous version
(2008-10-17), which should not be used for writing new policies.

You can also see Sid, or statement ID, in the statement. This is an optional identity that can be
added to each statement.

33

34

Protecting Your AWS Account Using IAM

We have seen that we can write a policy document to grant a user permission to carry out certain actions.
But do we always have to reinvent the wheel? The answer is no. Besides the customer-managed policies
that we can create on our own, AWS offers a set of common managed policies that AWS maintains.

Introduction to AWS managed policies

AWS managed policies are standard policies from AWS that follow best practices such as least privilege.
There are two different subtypes of AWS managed policies:

o AWS managed: The AWS managed type, such as the AmazonS3FullAccess policy, grants
access to all actions on all buckets in an account, while the AmazonS3ReadOnlyAccess
policy allows only the read operations. These kinds of policies exist for typical separations (such
as full access or read-only access) for many of the services.

o AWS managed for job functions: The second type is AWS managed policies for job functions.
Instead of being service-specific, these policies allow the actions commonly associated with
a job function, such as the Securityaudit policy that grants the required permissions a
security auditor might need.

Figure 2.2 shows the overview of available managed policies in the AWS Console. Clicking on the +
button in front of a policy lets us view the detailed definition (in JSON format) of what rights this
policy grants.

Identity snd Access % e 3 ruticen —
Maragement (M) o B | 9 administratoraccess WS managed - job functlon
Togge ciend the prevers of Ths pobcy with name Adminiss st Accans

AdministratorAccess

Prowices Rl scans to AWS servites and resources

"Version": "2012-18-17",
"Stotesent”: [

1

2

3

4

5 “Effect”: "Allow”,
& “Mction®: "=,
7

8

9

@

Resource”: ""

Figure 2.2 - View of the different managed policies in the IAM console

Now that we have seen how to write our own policies in theory and have also seen how the managed
policies from AWS work, it’s time for one last piece of theory. With IAM policies being such a central
and important concept, it makes sense to get a deeper understanding of how they are evaluated.

Understanding IAM policies

IAM policy evaluation
When evaluating whether a request should be allowed, AWS performs the following four steps in order:

1. Authentication: The actor that is sending the request is authenticated.

2. Processing the request context: In this step, the information around the request (such as the
actions, resources, environment data, and so on) is gathered. This is all the information that
is needed during the policy evaluation to determine whether the request should be denied
or allowed.

3. Evaluating policies within a single account: Here, the policies of the different types (identity-
based policies, resource-based policies, etc.) within the account are gathered and put in order
of evaluation.

4. Determining whether a request is allowed or denied: In this step, the request context is
evaluated against the policies and a decision as to whether it should be denied or allowed is made.

The following diagram shows a simplified version of the evaluation process.

Evaluation of all
Applicable Policies

Any Allow in
Palicy?

Any Explicit
Deny?

Everything Starts

with Deny No

MNe Request Deny

Yes Yes

Request Deny Request Allow

Figure 2.3 - Simplified flow of the evaluation of a policy

Note

You can find a more detailed version of the preceding flow chart in the AWS documentation at
thislink: https://docs.aws.amazon.com/IAM/latest /UserGuide/reference
policies evaluation-logic.html#policy-eval-denyallow.

When talking about policy evaluation, we have two different modes for an effect. An effect can either
be implicit or explicit. As an example, by default, all actions are implicitly denied. This means that
we need to add an explicit allow (i.e., a policy statement that allows the given action) to override
this default. This explicit allow can be overridden by an implicit deny in a different policy such as a
permission boundary. Also, an explicit deny will always override any allows.

35

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html#policy-eval-denyallow
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html#policy-eval-denyallow

Protecting Your AWS Account Using IAM

To illustrate, have a look at the following policy. This policy has two different statements. The first
gives an explicit allow for all actions on an S3 bucket (s3 : *) while the second one does an explicit
deny on the s3 : GetObject action:

{

"Version": "2012-10-17",
"Statement": [
{
"Sid": "GrantS3FullAccess",
"Effect": "Allow",
"Action": [
ng3kn
1,
"Resource": [
"arn:aws:s3:::mytest-bucket/*"

"Sid": "RevokeS3GetObjectAccess",
"Effect": "Deny",
"Action": [
"s3:GetObject"
1,
"Resource": [
"arn:aws:s3:::mytest-bucket/*"

}

A user with this policy attached would not have the ability to perform the s3 : GetObject operation
on the bucket. Even though the A11ow effect of the first statement explicitly allows this, the explicit
Deny in the second statement supersedes this.

Note

This is not an example of a good policy and is just here to showcase the ranking of the different
explicit allows and denies.

With the theory out of the way, let’s give our previously created user the right to access files in an S3
bucket using a policy.

Understanding IAM policies

Creating an IAM policy using the AWS CLI

Let’s create a new IAM policy that allows our user to perform all actions on an S3 bucket. First, create
an S3 bucket. You can use the example from the previous chapter for this. After that, follow these steps:

1. Create anew file called s3-policy-wide-priviledges. json and paste the following
code. Before jumping to the explanation, try reading through the policy and formulate what
API operations are allowed on what resources by this policy (you’ll find the answer at the end
of this subsection):

"Version": "2012-10-17",
"Statement": [
"Sid": "AllowS3Access",
"Effect": "Allow",
"Action": [
"S3 . *n
i
"Resource": [
m%n
1
1

2. To attach this policy to a previously created user, we can use the put -user-policy command:

aws iam put-user-policy --user-name packt-user --policy-name
s3 _unrestricted --policy-document file:// s3-policy-wide-
priviledges.json

3. We can then retrieve the policy via the get -user-policy command:

aws iam get-user-policy --user-name packt-user --policy-name
s3_unrestricted

{
"UserName": "packt-user",
"PolicyName": "s3 unrestricted",
"PolicyDocument": {
"Version": "2012-10-17",
"Statement": [
{
"Sid": "AllowS3Access",
"Effect": "Allow",
"Action": [

37

38 Protecting Your AWS Account Using IAM

ng3gkm
]I

"Resource": [

nxn

}

Now what does this policy allow the user to do? It grants the ability to execute all S3 API operations
(s3:*) on all S3 resources in the account (via "*" in the Resource section). While this is a
syntactically correct policy and there might be use cases where this kind of unrestricted access is the
correct way to go, in general, we want to provide the least amount of privileges that are required to
perform the actions. This is the principle of least privilege, and in the next section, we’ll rewrite the
policy to follow the principle.

Before progressing to the next section, however, let’s delete this wide policy from our IAM user using
the delete-user-policy command:

aws iam delete-user-policy --user-name packt-user --policy-name s3
unrestricted

The command does not show any output when the deletion is successful.

Rewriting our policy as least privilege

To rewrite our policy as least privilege, we first need a scenario. Let’s say we want to write a policy
that allows read access to objects in an S3 bucket while restricting the write access to a prefix. We can
craft this with two different IAM statements.

Open up a code editor and create a new file called s3-restricted. json. Paste the following
policy document into it:

{
"Version": "2012-10-17",
"Statement": [
{
"Sid": "AllowS3ReadAccessToBucket",
"Effect": "Allow",
"Action": [
"s3:Get*",
"g3:List*",

"g3:Describex*"

1,

Understanding IAM policies 39

"Resource": [

"arn:aws:s3:::<your-bucket-name>",

"arn:aws:s3:::<your-bucket-names/*"

"sidn

"Effect":

"AllowS3WriteAccessToBucketPrefix",

"Allow",

"Action": [

"s3
"s3
"s3
"s3
"s3
"s3
"s3
"s3
"s3

1,

:PutObject™",

:GetObject",
:GetObjectTagging",
:DeleteObject",
:DeleteObjectVersion",
:GetObjectVersion",
:GetObjectVersionTagging",
:GetObjectACL",

: PutObjectACL"

"Resource": [

"arn:aws:s3:::<your-bucket-name>/my-writable-prefix",

"arn:aws:s3:::<your-bucket-name>/my-writable-prefix/*"

}

As you can see, the policy got a lot longer but also a lot more specific. In the first statement, we grant
access to all read operations (Get *, List*, and Describe*) on the bucket and all of its objects.
In the second statement, we specify the write operations we want to allow.

So, this policy now specifies the actions that can be taken as well as restricts the resources on which

these actions can take place.

You can use the previous commands to apply this policy if you want to.

Note

A question you might have is, How do I find the permissions that are needed? A good starting
point is the AWS managed permissions. You can find them in the AWS Console in IAM.

40

Protecting Your AWS Account Using IAM

Introduction to IAM roles

So far, we have dealt with IAM users and these make sense when thinking about humans interacting
with the AWS API. But what about programmatic access such as from an EC2 instance? This is where
IAM roles come into play. IAM roles are similar to a user wherein we can attach policies to grant
access to certain API actions to that role. We can also specify who can assume an IAM role. This can
be an application but also a user.

Creating an IAM role with Terraform

In this example, we'll be attaching an IAM role to an EC2 instance. This means that we will allow the
EC2 instance to assume the role (and thus be granted the permissions by the associated role policy)
and access an S3 bucket.

Create a file called iam_role. tf and copy and paste the code from the GitHub folder into it.
Let’s go through this example and examine what we are doing here:

resource "aws_iam role" "my-test-iam-role" {

name = "my-test-iam-role"
assume_role policy = <<EOF
"Version": "2012-10-17",
"Statement": [
"Action": "sts:AssumeRole",
"Principal": {
"Service": "ec2.amazonaws.com"
"Effect": "Allow"
]
EOF

}

First, in the my - test - iam-role resource, we grant the EC2 service (via its service principal, ec2 .
amazonaws . com) the right to perform the st s : AssumeRole action. This is the API action that
the EC2 instance can use to assume the role.

As you can see, we are just writing the same JSON policy format we did previously by hand.

Understanding IAM policies

This Terraform code has created the role, but it is not yet attached to our instance. To do this, we need
to create an EC2 instance profile:

resource "aws iam instance profile" "my-test-iam-

instance-profile" ({
name = "my-test-iam-instance-profile"
role = "${aws iam role.my-test-iam-role.name}"

}

With instance profile done, we can create an IAM policy that restricts the instance profile to
carry out only a few actions on one bucket:

resource "aws iam role policy" "my-test-policy" {

name = "my-test-iam-policy"
role = "${aws iam role.my-test-iam-role.id}"
policy = <<EOF
{
"Version": "2012-10-17",
"Statement": [
{
"Sid": "GrantS3Access",
"Effect": "Allow",
"Action": [
"s3:ListBucket",
"s3:PutObject",
"s3:GetObject™
1 5
"Resource": [
"<insert-bucket-arn>",
"<insert-bucket-arns>/*"
]
}
1
}
EOF
}

Finally, we create an EC2 instance with the previously created instance profile. Before that, please
read the following note.

a1

42 Protecting Your AWS Account Using IAM

(7
Important note

Make sure to create a public/private key pair called packtpub in the EC2 console or via the
CLI. You can use the following command to create a key pair with the correct name and save
itas packtpub.pem:

aws ec2 create-key-pair --key-name packtpub --key-type rsa --key-
format pem --query "KeyMaterial" --output text > packtpub.pem

Remember that if you want to use this key to SSH into your machine on Linux, you'll have
to change the access rights to read-only permissions for the user. The command to do this is
chmod 400 packtpub.pem.

. J

Here is the EC2 instance:

resource "aws_instance" "test ec2 role" ({
ami = "ami-0d5fad86866a3a449"
instance type = "t2.micro"
iam instance profile = "${aws_iam instance profile.my -test-iam-

instance-profile.name}"
key name = "packtpub"

}

To create the infrastructure using the Terraform code, we first need to initialize the Terraform working
directory. This downloads the required providers and creates a state file:

terraform init
Next, we can apply the changes:

terraform apply

To verify that the IAM role was properly attached, you can log in to your EC2 instance (using SSH).
Make sure to have the private key you previously created handy:

ssh -I <path-to-key> ec2-user@<instance-ip>

You can then query the instance metadata to see the arn value of the attached instance profile:

curl http://169.254.169.254/latest/meta-data/iam/info

{

"Code" : "Success",
"LastUpdated" : "2020-06-28T05:18:17Z",
"InstanceProfileArn" : "arn:aws:iam: :XXXXXXX:instance-

profile/test-iam-profilel",
"InstanceProfileId" : "XXXXXXX"

Understanding IAM policies

In the previous example, we saw how Security Token Service (STS) is used to allow the EC2 service
principal to assume a role. But what is STS?

Short introduction to AWS STS

AWS STS is a service that allows you to request temporary, limited privilege credentials that can last
from 15 minutes to 36 hours. The benefit of short-lived credentials is that, in the event of a leak of
these keys, they remain active only for a limited amount of time.

Let’s say you commit the credentials retrieved from ST'S to GitHub by accident. At most, these would
be valid for 36 hours, thus limiting the time an attacker could use the credentials. Paired with only
attaching the least privileges required to those credentials, this is a great way to limit the surface and
blast radius of an attack.

To use AWS STS, an application needs to make a request for credentials to STS. STS then generates
dynamic credentials. Upon expiration of the credentials, the application can request new credentials
from STS. Upon requesting new credentials, STS will check whether the requestor still has the required
permissions to request these credentials.

To illustrate this further, let’s see how an IAM user would get permission to retrieve credentials from STS.

First, we have an IAM user. This user has a policy attached to it that allows this user to assume an IAM
role called S3ReadOnlyAccessRole. You have seen such a policy (allowing the st s : AssumeRole
action on a role) with the instance in the previous example. The authenticated IAM user then calls the
assume-role operation, which returns new (and temporary) AWS credentials, namely, an access
key ID and a secret access key.

S3ReadOnlyAccessRole has a policy attached to it that allows access to an S3 bucket. Using the
new credentials returned from the AssumeRole call, the user/application can carry out actions that
are permitted by S3ReadOnlyAccessRole.

The advantages of using STS are the following:

« Provides temporary security credentials
 Uses short-term credentials
« No need to rotate/revoke passwords or access keys manually
o Allows for identity federation (we will cover this in depth in Chapter 17)
STS is the preferred way to retrieve credentials but what if we still have a few secret keys? In the

following chapter, we will use the AWS API and Boto3 to create a script that can check for credentials
with an age over a user-specified threshold and deactivate them.

43

a4

Protecting Your AWS Account Using IAM

Rotating IAM credentials using Boto3

As we have previously discussed, AWS strongly recommends the usage of STS. But what if, for legacy
reasons, our application requires a permanent access key and security key? We still want to rotate
them regularly. In this section, we’ll write a script using Python3 and Boto3 to check for outdated
keys. If our key is older than the threshold, our script will print a message to warn us about the keys
that exceed the threshold.

Prerequisites

The user running this script needs the iam: ListUsers and iam:ListAccessKeys permissions.
Make sure that you have followed the setup instructions in Chapter 1 to have Boto3 and Python3 set up.

Creating a script to detect keys that should be rotated

To identify keys that are older than the threshold, we will use Boto3 to list all IAM users in our account.
Then, for each of the users, we will retrieve all of their active access keys and check whether they are
over our rotation threshold.

Follow these steps to create the script:
1. Inacode editor, create a file called check rotation.py and open it.
2. We first import the bot o3 library and the datet ime module:

import boto3
import datetime

3. Next, we define our key age threshold. In this example, this is set to 7 days:
MAX AGE DAYS = 7
4. Since we need access to the IAM service, we'll create a Boto3 client (more details on what a
client is can be found in the Boto3 introduction in Chapter 1):
iam = boto3.client ("iam")
5. Next, we create a function that, given the response of the AWS API for a key, will calculate the
current age of a key in days and return it:

def get key age(access key):
create date = access key['CreateDate']

current date = datetime.datetime.now(tz=datetime.timezone.
utc)

age = current date - create_ date
return age.days

Understanding IAM policies

6. Next, we need a main function to string our workflow together. First, we will retrieve all users
from IAM and we will also create an empty list to which we will add all the keys that need rotation:

def main() :
all users = iam.list users() [‘Users’]
keys for rotation = []

7. Next (and still in the main function - mind the indentation), we'll iterate over all users and
list all of their access keys:

for user in all users:
user name = user|['UserName']
key response = iam.list access keys (UserName=user name)

print (£"User: {user name}")

8. Now, we can iterate over each access key, calculate the age, check whether the age is over the
threshold, and print out some debug information:

for access key in key response['AccessKeyMetadata']:
key id = access key['AccessKeyId']
age = get key age(access key)
print (£"- {key id}: {age}")

if age > MAX_ AGE_DAYS:
keys for rotation.append((user name, key id))

9. Finally, we want to print out all the keys that have been identified as outdated and run our
main method. Mind the indentation:

print ()
print ("Keys for rotation")
for user, key id in keys for rotation:
print (£"{key id} from {user}")

if name == " main ":

main ()

10. Run the script by using the python3 command:

python3 check rotation.py

The output of such a script can look like this. Your specific output will vary based on the names of the
names and number of users you have in your account:

python3 check keys.py
User: packt-user

45

46

Protecting Your AWS Account Using IAM

- AKI<redacted>: 9

- AKI<redacted>: 8
User: user2

- AKI<redacted>: 290

Keys for rotation:
AKI<redacted> from user user2

As you can see in this example output (yours will differ!), we have two users with three active keys.
Two of them have an age that is under the threshold, so only user2 with an access key that has been
active for 290 days is identified as a candidate for rotation.

(R
Note

You could automatically invalidate the keys that exceed the threshold. To do this, the user running
the script needs the iam: UpdateAccessKey permission, and the corresponding function
call in Boto3 is as follows: ITam.update access key (UserName=<user_ name>,
AccessKeyId=<access_key id>, Status='Inactive')

- J

In this section, we had a brief introduction to IAM policies. We saw how these policies can be used to
handle the authorization of actions within the AWS cloud. We also saw how to write small administrative
scripts that can automate common reporting tasks like checking for outdated access keys.

Summary

In this chapter, we explored the different core components that make up the IAM service in AWS.
We saw how users and groups can be granted permission to carry out actions on resources within the
platform using IAM policies. We also had a first look into STS and wrote a short script using Boto3
to identify access keys that are ready for rotation.

In the next chapter, we'll get started with the first component of infrastructure within AWS, Amazon
Virtual Private Cloud - or VPC.

Part 2:
Building Infrastructure

In this part, we'll introduce the basic blocks of infrastructure within AWS - the Virtual Private Cloud
(VPC) that defines your network within AWS and Elastic Compute Cloud (EC2). EC2 provides you
with the ability to launch virtual machines - called instances — into your VPC. This part explores the
concepts of VPCs and EC2 and introduces you to the code required to automate the deployment of
the infrastructure.

This part contains the following chapters:

o Chapter 3, Creating a Data Center in the Cloud Using a VPC
o Chapter 4, Scalable Compute Capacity in the Cloud via EC2

3

Creating a Data Center in the
Cloud Using a VPC

In the previous chapter, we had a look at the IAM service and how we can use its roles and policies
to allow or deny access to a resource.

But where do we deploy these resources into? This is where Virtual Private Clouds (VPCs) come into
play. You can think of a VPC as your data center in the cloud. It resembles a separate environment in
which you can set up your own network topology and later deploy resources.

In this chapter, were going to cover the following main topics:
o Setting up VPCs in the console and via infrastructure as code
o Cloud networking concepts and their components
o Connecting two VPCs
o Verifying the status of a VPC via Boto3

Let’s get started!

Technical requirements

Before following along with this chapter, please create an AWS account for yourself. You can sign
up athttps://aws.amazon.com. You should also have basic knowledge, as well as a working
installation, of both Terraform and Boto3. We covered both of these in Chapter 1.

A basic understanding of Python will help with the programming-based sections of this chapter.

Basic knowledge of networking concepts such as subnets, routing, Classless Inter-Domain Routing
(CIDR), and IP addresses will help you get the most out of this chapter.

https://aws.amazon.com

50

Creating a Data Center in the Cloud Using a VPC

All scripts from this section can be found with the following GitHub link:

https://github.com/PacktPublishing/AWS-for-System-Administrators-
Second-Edition

The CiA video for this chapter can be found at https://packt.link/jCwAi

A VPC and its components

A VPC functions as a virtual network and thus we will find many concepts from traditional networks
reproduced in AWS and within a VPC. When setting up your account, AWS will create a VPC in each
of the Regions. This VPC is known as the default VPC.

VPCs are Region-specific but you are not limited to one VPC per Region. This means that a VPC can’t
span multiple Regions, but you can create multiple VPCs in the same Region. The following figure
shows an architectural depiction of two VPCs within a Region that has three Availability Zones (AZs).

Availability Zone &

Availability Zone B

Availability Zane C

Figure 3.1 — Multiple VPCs within a Region that has three AZs

In the previous chapter, we had a quick introduction to the way the AWS infrastructure is built and
saw the concept of AZs. VPCs span all AZs of a Region. When creating a VPC, we assign a range of
IP addresses by defining a CIDR block that is associated with this VPC. Resources deployed within
the VPC will then be assigned IP addresses out of that CIDR block.

https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition
https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition
https://packt.link/jCwAi

AVPC and its components

Note

Be careful when choosing your CIDR block. While many decisions within the cloud can be
reworked later, redoing your IPs can be difficult. It is thus advisable to use non-overlapping
IP ranges.

To further subdivide our VPC, we use subnets. We can have multiple subnets within a VPC. Subnets
always span one AZ, and when creating them, you’ll define the subnet to use a CIDR range of IP
addresses. The type of your subnet is determined by how you configure your routing. A few common
types are the following:

o Public subnets: These are for subnets that have direct routes to the public internet

o Private subnets: These are for subnets that do not have direct routes to the public internet and
thus need a route to a NAT device to make requests to the public internet

 Isolated subnets: These are for subnets that can’t route to any destinations outside of the VPC

The following figure shows two VPCs within a Region with three AZs. The VPCs contain a private
and a public subnet for each of the three AZs.

Availability Zone A

Availability Zone B =
Private subnet Private subnet Private subnet Private subnet

Availability Zone C

Figure 3.2 - Two VPCs with a public and a private subnet in each AZ

51

52

Creating a Data Center in the Cloud Using a VPC

But how do we determine the routing of a subnet? By associating it with a route table. By default, a
subnet will be associated with the route table of the VPC that it is part of. We can either change the
route table of the VPC or associate the subnet with its own route table.

One piece of information that is missing here is our access to the public internet. To allow communication
from and to the public internet, we need another component, called an internet gateway. These are
commonly abbreviated to IGW. A subnet is known as a public subnet if it is associated with a route
table that has a route to an IGW. Note that you can provide outbound-only access to the internet for
a private subnet using a NAT gateway. We'll be covering these in the next chapter.

With this theory at the back of our minds, let’s create a VPC as well as a public subnet and an IGW.

Creating a VPC using the AWS console

For this first walk-through, we will use the AWS console and create our VPC and associated subnets.
Before creating the VPC and associated subnets, we need to define a few properties:

o The name of our VPC will be vpc-a.

o The CIDR range of our subnet willbe 10.0.0.0/16. This is a very large block of 65,536 IP
addresses, and you can choose a smaller block if you want to. If you do so, make sure to adjust
your subnet ranges.

In the AWS console, follow these steps to create our first VPC:

1. In the AWS console, make sure that you are in the North Virginia (us-east-1) Region by
checking in the Region dropdown in the top-right corner.

2. Search for VPC and select Your VPCs in the left navigation. You'll see a Create VPC button
in the top-right corner, as shown in Figure 3.3:

9 @ 8 &
Last updated
VPC dashboard < Your VPCs (3} o Lems than 1 miinute ago @ Sresta VR y
| Q Search '| 1 @
EC2 Global view [3 :
= 0| Hame v | weCio v | state % | BlockPublic.. ¥ | IPvaCIDR
| Fiteer by WPC v | =
e T |} shared-vpc wpc-05914ffh19860fcc & Available S off 1000018
¥ Virtual private cloud O main-upe wpe-Obeash?oedEad Bl &) Available 2 off 10.0.0.0/15
o - vpc-269hd18d @ Availalbile o off 1723100016
Subnets
Rewte tables
Intemet gateways
Egress-only internet = = &=
gataways Select a VPC above

Carvler gateways
DHCP option sets
Elaszic IPs

Managed prefix lists

NAT gateways

Figure 3.3 - The VPC dashboard with the list of your current VPCs

Creating a VPC using the AWS console

4.

Click the Create VPC button. Next, fill out the following details:

* Resources to create: Select VPC only since we'll be creating our subnets, route tables, and
so on by hand.

* Name tag: Type vpc-a.

* IPv4 CIDR block: Select IPv4 CIDR manual input and then type the CIDR block you have
chosen. In this example, itis 10.0.0.0/16.

* IPv6 CIDR block: Select No IPv6 CIDR block.

* Tenancy: Select Default. Here, you have the choice between Default, which will run instances
deployed into this VPC on shared hardware, and Dedicated, which, with a fee, will run all
instances in this VPC on single-tenant, dedicated hardware. We'll choose the Default option
since we don’t need the single tenancy and want to avoid extra costs.

Click Create VPC on the bottom right to create the VPC.

Once you have created your VPC, you'll see a few default resources, such as a main route table (number
1 in the following figure) and a main network ACL (number 2 in the following figure).

e VPC > YourVPCs » wpc-0895feld9a74ds113 ®© @
VPCdashboard < vpc-0895fe1d9a74d8113 / vpc-a
ECZ Global View [3 Details i
[teer by v ¥ VPCID state Block Public Accass DNS hostnames

5 vpc-0895fe1d9a74de113 @ vailable Oo# Disablad

Virtual private cloud

Your VPCs DNS resolution Tenancy DHCP option set Main route table

Subnets

Enabled default dopt-04ac449efas7 28516 rtb-0021df1atd3495daa

Main network ACL Default VPC IPva CIDR IPvE pool
Route tables (2)
No 10.0.0.0/16 -
Internet gateways
Egress-only Intemet IPvE CIDR (Network border Network Address Usage Rmme 53 Resolver DNS Owmer ID
group) metrics Firewsall rule groups =] 0 |

gateways

= Disabled =

Carrier gateways

Figure 3.4 — Overview of the newly created VPC with associated default resources

Creating subnets in our VPC

Before

having a deeper look into the route table, let’s create subnets inside of our VPC.

For this example, we are going to create two subnets, one in AZ A and one in AZ B. For the subnet

in AZ
10.0

1.

A, we'll be using the 10.0.1.0/24 range, and for the subnet in AZ B, we’ll be using the

.2.0/24 range. Let’s start:

Inside the AWS console, choose the Subnets entry in the left-hand navigation pane and, on
the top right, click on Create Subnet.

53

54

Creating a Data Center in the Cloud Using a VPC

2. In the dropdown, select the previously created VPC to be able to specify the following
subnet settings.

3. Fill in the following details under Subnet settings, as shown in Figure 3.5:

* Subnet name: We'll choose us-east-1-vpc-a-public-a in this example
* Availability Zone: We'll set this to us-east-1a
* IPv4 subnet CIDR block: This will be set to 10.0.1.0/24 as we discussed previously

Subnet settings
Specify the CIDR blocks and Availability Zone for the subnet.

Subnet1of 1
Subnet name

Create a tag with a key of 'Name' and a value that you specify,

| us-east-1-vpc-a-public-a

The name ean be up te 256 characters long.

Availability Zone 1nfo

Te zone in which

sur subnet will reside, or let Amazon choose one for you

| United States {N. Virginia) / us-east-1a LN
IPv4 VPC CIDR block info

Choose the VPC's IPvd CIDR block for the subnet. The subnet's IBva CIDR must Ui within this block.

| 100018 v |

IPv4 subnet CIDR block

10.0.0/24

L > ~ W

¥ Tags - optional

Key Value - optional

| & Name X | | Q us-east-1-vpe-a-public-a ot | " Remave ‘J

o ~
| Add newtag |

You can add 49 more tags

I i
| Remove |

e —— 4
| Add new subnet)
. s

Figure 3.5 - Settings for our first subnet

4. Click Create Subnet to create the new subnet.

There are two things to note here. In this example, we have used a simple naming convention of
<regions>-<vpc-name>-<subnet type>-<availability zones to come up with
the name of us-east-1-vpc-a-public-a. While you don't have to follow this exact naming
convention, you should come up with your own naming convention to make it easier to identify and
associate resources. As you have seen previously, youd normally have at least one subnet per AZ. In

Creating a VPC using the AWS console

Regions such as us-east-1, where, at the time of writing, there are six AZs, it can become difficult to
identify the subnet you are searching for.

Another thing you might notice is that the number of available IP addresses in the overview doesn't
include all the IP addresses in your selected range. Regardless of the CIDR range you chose, you won't
be able to use the first four and the last IP address.

Let’s take the 10.0.1.0/24 CIDR range as an example:

e 10.0.1.0 is the network address

e 10.0.1.1 isreserved for the AWS VPC router
e 10.0.1.2isreserved for the AWS DNS server
e 10.0.1.3 isreserved for future use by AWS

e 10.0.1.255 is the network’s broadcast address

We need to repeat the steps outlined in this chapter for all subnets we want to add to our VPC. The
following figure shows the settings for the second subnet.

Subnet settings
Specify the CIDR blocks and Availability Zone for the subnet.
Subnet 10f 1

Subnet name
Create a tag with a key of ‘Name' and a value that you specify,

| us-east-1-vpc-a-public-b

The name ¢an be up to 256 characters long,

Availability Zone info

Choose the zone in which your subnet will reside, or let Amazon chooase one for you,

L United States (M. Virginia) / us-east-1b v)

IPv4 VPC CIDR block Infa
Cheose the VPC's IPvd CIDR block for the subnet. The subnet’s IPvd CIDR must lie within this block.

[10000116 v |

IPv4 subnet CIDR block

10.0.2.0/24 el

< > ~ »

¥ Tags - optional
Key Value - optional
I_(Q, Name X _I Q. us-east-1-vpc-a-public-b X _I Remove

Add new tag

You can add 49 mare tags.

'f Remove |

F T T e ¥
\ Add new subriet)

Figure 3.6 — Settings for the second subnetin AZB

56

Creating a Data Center in the Cloud Using a VPC

A nice way to get an overview of all the networking-related resources within our VPC is with Resource
map. The Resource map section in the following figure shows an overview of subnets and their
association with the specific VPC.

vpc-0895fe1d9a74dB8113 / vpe-a

{_Actions ¥

Details .

VRCID
I8 wpc-oeasfeldzaTadss

DHS resclution
Enabled

Main netwerk ACL
aci-Gabdaifales18a55e

WPV CIDR (Metwerk beeder group)

State
@ avaasle

Tenancy
default

Default VPC
Mo

Mutwark Address Usage metrics
Disabled

Block Public Access
Dok

DHCP option set
dnpt-04aca4Sedas T2RGHE

1Ped CIDR
OO0 TE

Routa 53 Resolvir DNS Firewall rule groups

DNS hostnames
Disabled

Main route table
rth-0021 dfTafd$495daa

1Py peal

Ownar 1D

=8|

Resource map CIDRs | Flowlogs | Tags | Integrations

Resource map 1w

Subnets (2)

Sulinets within thiks YR

Route tables (1)

Rute nerwark tEMc 1o resauces

Network connections {0}

Coneecons 10 athes etwars

vpe-a us-east-1a — rib-DO21df1afdFa85daa

B w-east-1-vpe-a-public-a
us-east-1b

O wsieast-1vpeea-public-n

Figure 3.7 - The resource map of our VPC so far

Follow these steps to get to your VPC resource map:

1. In the left-hand navigation, click Your VPCs.

2. In thelist of VPCs, select our previously created vpc -a.

3. On the details page, click on Resource Map on the lower tab menu.
In the map, we can see that we have our two subnets that are associated with this VPC, as well as the
default route table. We can also see that both subnets, because we haven't associated a subnet-specific

route table with them, have been associated with the VPC’s main route table. This is indicated by the
gray lines leading from the subnet to the route table.

Technically, our subnets are not public, as their naming would suggest, yet. As we have previously
discussed, a public subnet is a subnet that has an IGW associated with it. So, let’s create one!

Creating an IGW in our VPC

In order for resources in our subnet to be able to reach and be reachable from the internet, we need
an IGW.

Creating a VPC using the AWS console

Follow these steps to create an IGW:

1. Navigate to the VPC menu in the AWS console.
2. In the left-hand navigation, select the Internet Gateways menu item.
3. On the top right, select the Create Internet Gateway button.

Create internet gateway

An internet gateway is a virtual rauter that cannects 2 VAC a the intornet. Ta creste 2 new intemet gatoway specify the name for the gateway belaw,

Internet gateway settings

Name tag

Creates a tag with a key of "Naie' a0d 3 valos that you specity.

| wpc-a-igw

Tags - optional

Atz i 4 label that you assign te an AWS rescarce. Each bag cansists of 4 key and an opticas! value, ¥ou can use tags ta search and flter your resovces or track your AWS costs.
Key Value - aptianal

| @ Mama ® | wpcadigw % | [Remove |

(" Add newtag)
Vi 431 dekd 49 enire Ehrs

cancel ([Ereate internet gateway |
Figure 3.8 - Values for the creation of our IGW

4. In the Creation dialog, type a name for your IGW. This can be anything, but for this example,
we'll be using a name that makes the association between this IGW and our VPC (vpc-a) clear.

In the Name tag field, type in the name. In this example, you can see it's vpc-a-igw.
5. Click Create internet gateway.

After the IGW has been created, you’ll be taken to an overview page for this gateway. Notice
that the state says Detached. By default, the previously created IGW won't be associated with
a VPC. In order to create this association, we need to attach it.

6. In the top-right corner, select Actions, and in the dropdown, select Attach to VPC.

7. In the dialog, choose the previously created VPC from the dropdown and click Attach
internet gateway.

igw-0ff805e6ff4de2fal f vpc-a-igw (actions &)
|| Attach tavPC
Details inc stach fram VPC
Internet gateway 10 State VPCID Owner | Manage tags
T igw-ffansekffadezfas (5 Detachad - =] | ki
Delete
Tags (oranage tags
| @ Sesrch tags J 1 @
Key | walue
Name wpC-a-igw

Figure 3.9 — Menu item to attach the IGW to a VPC

57

58

Creating a Data Center in the Cloud Using a VPC

When navigating back to the resource map of our VPC, we can now see the newly created and attached
IGW under Network connections.

Resource map ClDRs Flow logs Tags Integrations

Resource map i

VPC shew details Subnets (2) Route tables (1) Network connections {1}
T — Setamets within i VI auke extwnh rafle b escunes Lenmessta to uther rstmeres
vac-a us-east-1a nb-00z 10 atd3A95da vpea-igw

B us-ease-1-upe-a-public-a
us-east-Th
O os-gast-1-vpe-a-public-t

Figure 3.10 — Resource map showing the newly created IGW

Now, there is one last thing missing in order to make these subnets public. We previously stated
that we also need the subnets to route their traffic to the IGW. We do this by creating a route table,
creating a routing rule to send all traffic to the IGW, and then associating our subnet with the newly
created route table.

Creating a route table

Before creating a route table, you might wonder why we can’t modify the main route table of our VPC.
The answer to this question is that we can. However, one consideration we should take into account
when doing this is the fact that subnets that have not been explicitly associated with a route table will
be associated with the main route table of our VPC.

This opens us up to a scenario where the default route table has a route to an IGW and thus allows
all resources in the associated subnets to route to the internet. This means that if someone creates
a subnet in this VPC without associating another route table, the subnet will be public. This can be
desired behavior, but we need to be aware of this.

In order to create a new route table, follow these steps:

1. Navigate to the VPC menu in the AWS console.
2. On the left navigation menu, click Route tables.
3. In the top-right corner, click the Create route table button.
4. You'll be asked to fill in the information of your new route table:
* Name: Select something that makes it clear what this route table is about, for example, vpc-a-
public

* VPC: Select the previously created VPC to associate this route table with the VPC

Creating a VPC using the AWS console

5. Click the Create route table button, as shown in the following figure:

Create route table .«

A route table specifies how packets are forwarded besween the subnets within your VEC, the internet, and your VPN connection.

Route table settings

Mam -
Comate a tig it & by of Hame! and 3 il that yeu specify
| wpe-a-pubiic |
vee

The WPE te e fer s redte table

[vp-08g5te1d5a74di113 (vpe-s) *]

Tags

At s 8 Laoed thit you nssi 1o an AWS reseaurce. Each Lag cansists of a key and an optianal value. You can e tags to search and filtr your resources or track your AWS casts
Key Value - aptionat
(& Hame % | [wpeaputlic % | (remave)

(Add now tag)

o £an nckd 4% mars tage

Cancel

Figure 3.11 — Inputs for our new route table

So far, we have created a new route table and have associated it with our VPC, but we haven’t associated
the IGW with it yet. To do this, we need to create a route.

As you can see in the overview (Figure 3.12), by default, we have a rule that routes the entire range of
the VPC (10.0.0.0/16 in this example) to the local targets.

To create a new route, follow these steps:

1. On the overview page of your route table, click the Edit routes button in the lower-right corner.

@ Routs table rtb-064fn202 775471307 | vpc-a-public was created successfulty,

rth-064fe202775471a07 / vpc-a-public
Details o
Route table ID Main Explicit subnet associations Edge associations
[0 rib-084fez02775471307 0 me - -
VPC Owner ID
wpc-0ES5faldBaTAdE113 | vpe-a (=]
Routes Subnet associations Edge associations Route propagation Tags
Routes (1)
[@ Fiftar routes] <
Destination % | Target @ | Status % | Prapagated v
10.0.00/16 tocal Actlve Mo

Figure 3.12 — Overview of the route table including the list of currently published routes

59

60 Creating a Data Center in the Cloud Using a VPC

2. Inside the Edit routes menu, click the Add route button on the lower left. For Destination,
select the 0. 0.0.0/0 CIDR range. This is the range of all IP addresses. For Target, select
Internet Gateway as the target type and then select our previously created IGW.

Edit routes
Destination Target Status Propagated
1000016 Iocal v | @active No
Q, ol x|
| & oooof % | | intemet Gateway ¥)= No (romove)
Q) igw-DEbfbabE506046aTe X |
(Add route)

cancel (_preview) ([Saeehanges

Figure 3.13 - Route configuration for our IGW in the newly created route table

3. Click Save changes.

We now have a route table within our VPC that allows traffic to the internet via the IGW. The last
step is to associate the previously created subnets with this route table. Follow these steps to do this:

1. Navigate to the overview of our previously created route table and find the Subnet associations tab.

2. Inthe tab, there are two sections: Explicit subnet associations, which indicates all subnets that
have been explicitly associated with this routing table, and Subnets without explicit association.
These are all the subnets that don’t have an explicit association and are thus associated with
the main route table.

3. Click the Edit subnet associations button next to the Explicit subnet associations section.
4. On the new page, select the two public subnets we created before and click Save associations.

Edit subnet associations

Change which subnets are associated with this route table.

Available subnets (2/2)

| @ Filter sihner assaciations 1 @
MName v | SubnatiD v | iPvi CIDR w | IPvE CIBR ¥ | Route table ID Ll

[us-sast-1-vpc-a-public-h 10.0.2.0/24 - Main (rth-D021dFaf3495daa)

| B us-sast-T-vpe-a-public-s 10.0.1.0/24 - Main (rth-D02 1AM afd3435daa)

Selected subnets

[subnet-DbbatdFE2605875d5 | s-east-1-vpe-a-public-h X | [sub 1831 / us-east-1-upc-a-public-a X |

Cancel || Save associations

Figure 3.14 — Association of subnets with our routing table

Creating a VPC using the AWS console

We can now navigate back to our resource map in the VPC and notice two changes.

Resource map CIDRs Flow logs Tags Integrations

Resource map info
VPC show details Subnets (2) Route tables (2) Network connections (1)
Your AW vimual netwark Subinets within this VPC st petwirk traffic to rescurees Connections to oehes networks

wpe-a us-east-1a rtb-0021df1afd3495daa vpe-a-igw
O us-sast-1-ype-a-public-a wpe-a-public
us-east-1h

O us-east-1-vpc-a-public-b

Figure 3.15 — Resource map after all associations

As seen in the preceding figure, the changes are as follows:

o The subnets now have a gray line connecting them to the previously created IGW via the newly
created route table

o The little icon next to the subnets has changed from blue (indicating private) to green, indicating
a public subnet

This means that we have now successfully associated the public subnets to our IGW via the route table.

Exploring network access control lists

One feature of networking in the VPC that we have seen but haven’t had a closer look at yet is network
access control lists, or NACLs.

NACLs allow us to, on a VPC or subnet level, allow or deny traffic based on protocol or port. By
default, a VPC will have a main NACL associated with it. NACLs are made up of rules that are divided
into inbound and outbound rules. Inbound rules control what traffic is allowed to come into our
network and outbound rules determine what traffic is allowed to leave our network. The following
figure shows the inbound rules for our default NACL. It shows that this rule allows all inbound traffic
from any source IP.

Inbound rules ‘Outbound rules Subnet associations Tags
Inbound rules (2} ((editinbound rutes)
[Q Fitter inbewund rutes _'| 1 @&
Rule number v | Type v | Protocsl w | Part range w | Source v | Allow/Deny -
0o M traffic Al Al @.000/0 @ Altow

Al traffic Al Al 0.0.00/0 (&) Deny

Figure 3.16 — Overview of inbound rules of our default NACL

61

62 Creating a Data Center in the Cloud Using a VPC

As you can see in the preceding figure, we have a rule that allows all traffic, from all protocols, on all
ports from all source IP addresses.

While NACLs can be used as an additional layer of security, we generally use Security Groups (SGs)
when restricting access to our resources. We'll learn more about SGs when we talk about setting up
EC2 instances in the next chapter. Once we have introduced SGs in Chapter 4, we'll have a discussion
about when it would make sense to augment SGs with NACLs.

In this chapter so far, we have seen how to create a VPC using the web console. As you have probably
realized, there are many different things to create and configure besides the VPC itself, such as the
subnets, IGWs, and custom route tables. Doing this manually in the AWS console, while possible,
is not very reproducible and is prone to human error. In the next section, we’ll thus automate this
process using CloudFormation.

Creating a second VPC using CloudFormation

In this section, we'll create another VPC. But instead of creating the VPC in the console via clicking
- often referred to as ClickOps, we'll be doing it in a CloudFormation template.

Note

While this example is in CloudFormation, there is a commented version of the same workflow
in CDK and Terraform that is available in the GitHub repository for this book.

Setting up the VPC and subnets

Let’s begin setting up our CloudFormation stack:

1. Create a file called vpc . yml and open it in a code editor of your choice.

2. Add the following AWS template version and description boilerplate:

AWSTemplateFormatVersion: "2010-09-09"
Description: "CloudFormation template to create a VPC"

3. Next, we specify the parameters that we want to have. Parameters are values that we can pass
into the CloudFormation template at creation time. In our example, there will be two parameters:

VpcCidrPrefix: This is the CIDR prefix for our VPC (i.e., 10.0)

VpcName: This is the name of our VPC

Parameters:
VpcCidrPrefix:
Type: "String"
AllowedPattern: " (\\d{1,3})\\.(\\d{z,3})"

Creating a second VPC using CloudFormation

VpcName :
Type: "String"

Notice how we use a regex to allow only parameters where there are two one- to three-digit
numbers that are separated by a dot. Both parameters are of type String.

Next, we need to create the actual resources. We use the intrinsic function of Join to combine
our CIDR prefix that we defined as a parameter with the hardcoded 0. 0/16 postfix. Intrinsic
functions are built-in functions that help us with tasks such as combining multiple strings or
referencing a variable. We use the Ref function to reference the VpcName parameter when
setting the name of our VPC. Intrinsic functions such as Join and Ref are called using an
exclamation point followed by the name of the function and the arguments.

Within the definition of the VPC properties, we enable DNS support using the
EnableDnsSupport property set to True. This means that DNS resolution within the
VPC on the AWS-provided DNS server is enabled. We then also set EnableDnsHostnames
to True, which tells AWS to assign a hostname to each instance that is launched into this VPC:

Resources:
Vpc:
Type: "AWS::EC2::VPC"
Properties:
CidrBlock: !Join ["", [!Ref VpcCidrPrefix, ".0.0/16"]1]

EnableDnsSupport: True
EnableDnsHostnames: True
Tags:
- Key: Name

Value: !Ref VpcName

Additional information

In the previous step, we saw how DNS resolution is enabled — but where is the DNS server?
When we create a new VPC within AWS and assign it a CIDR range, AWS will reserve five IP
addresses (the first four and the last) that are within the CIDR range. These reserved addresses
can’t be assigned to instances within the VPC.

Let’s take the 10.0.0.0/24 range as an example. Within this range, the following IPs
are reserved:

e« 10.0.0.0: The network address.

e 10.0.0.1: The “first” address. This is reserved for the VPC router.

e 10.0.0.2: The “second” address. This is the address used by the VPC DNS server.
e 10.0.0.3: The “third” address. This is reserved by AWS for future use.

e 10.0.0.255: The “last” address, also known as the “broadcast” address. AWS does not
support the networking concept of broadcasting and thus this address is also reserved.

63

64 Creating a Data Center in the Cloud Using a VPC

5. Next, we'll create a public subnet. In this block, you’ll find two new intrinsic CloudFormation
functions: Select and GetAZs.

Select allows us to select an element out of a list, while Get AZs returns the list of AZs inside
of the Region that this stack is being deployed into. For a Region such as us-east-1 with its (at the

time of writing) six AZs, this list would look like this: ["us-east-1a", "us-east-1b",
"us-east-1c", "us-east-1d", "us-east-le" , "us-east-1f"].So,the
1Select [0, !GetAZs ""] function call would return us-east-1a.

Notice that the index for the Select function starts at 0. By using Select and GetAZs, we
do not need to hardcode this information. Notice also how we reference the previously created
VPC using the |Ref Vpc function. Since instances in a public subnet should also receive a
public IP address, we set the MapPublicIpOnLaunch property to True:

PublicSubnetA:
Type: "AWS::EC2::Subnet"
Properties:
AvailabilityZone: !Select [0, !GetAZs ""]
CidrBlock: !Join ["", [!Ref VpcCidrPrefix, ".1.0/24"]]

MapPublicIpOnLaunch: True
VpcId: !Ref Vpc

Tags:
- Key: Name
Value: !Join ["", [!Ref VpcName, "-public"]]

6. Now that we have our public subnet created, we can create two more private subnets that will
be in the second and third AZs. We indicate that we do not want to assign a public IP address
to instances assigned to this subnet by setting the MapPublicIpOnLaunch property to
False. We also use indexes 1 and 2 for our ! Select function call to retrieve the second
and third AZs (us-east-1b and us-east - 1c for the previously seen example of the
us-east-1 Region):

PrivateSubnetB:
Type: "AWS::EC2::Subnet"
Properties:
AvailabilityZone: !Select [1, !GetAZs ""]
CidrBlock: !Join ["", [!Ref VpcCidrPrefix, ".2.0/24"]]

MapPublicIpOnLaunch: False
VpcId: !Ref Vpc
Tags:
- Key: Name
Value: !Join ["", [!Ref VpcName, "-private-1"]]
PrivateSubnetC:
Type: "AWS::EC2::Subnet"
Properties:

Creating a second VPC using CloudFormation

AvailabilityZone: !Select [2, !GetAZs ""]

CidrBlock: !Join ["", [!Ref VpcCidrPrefix, ".3.0/24"]]
MapPublicIpOnLaunch: False

VpcId: !Ref Vpc

Tags:
- Key: Name
Value: !Join ["", [!Ref VpcName, "-private-2"]]

Finally, we need to return some outputs. By defining outputs in one stack, we can reference
these outputs in another stack. Outputs contain a logical ID (such as VpcCidr), a description,
a value, and an export name. The value is usually determined by referencing a resource (such
as the VPC or a subnet) that was defined in this stack. If we want to use the values of these
outputs in another stack - this is called cross-stack referencing — we need to define an export
name. This is done using the export directive that follows. To define the export name, we use
another intrinsic function, called Sub - short for “substitute” Sub allows us to define a template
where - during the creation of the stack — placeholders can be substituted for a value that is
only known during or after the creation of the stack. Placeholders, also known as variables, are
defined using the $ {my-variable} syntax.

AWS defines some variables, also called pseudo parameters, such as the name of the stack
(AWS: : StackName) or the ID of the account that this stack is being deployed into
(AWS : : Account Id). All of these AWS-provided pseudo parameters start with AWS : :.
You can find a complete list of them all here: https://docs.aws.amazon.com/
AWSCloudFormation/latest/UserGuide/pseudo-parameter-reference.
html.

Let’s assume that we will deploy this CloudFormation template under the stack name vpc-b.
In our example, below the output that, as a value, contains the ID of our newly created VPC,
would have the vpc-b-VpcId export name:

Outputs:
VpcId:
Description : "VPC ID"
Value: !Ref Vpc
Export:
Name: !Sub ${AWS::StackName}-VpcId
VpcCidr:
Description : "VPC CIDR"
Value: !GetAtt Vpc.CidrBlock
Export:
Name: !Sub ${AWS::StackName}-VpcCidr
PublicSubnetA:
Description : "Public A Subnet ID"

Value: !Ref PublicSubnetA
Export:

65

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/pseudo-parameter-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/pseudo-parameter-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/pseudo-parameter-reference.html

66 Creating a Data Center in the Cloud Using a VPC

Name: !Sub ${AWS::StackName}-PublicSubnetA

PrivateSubnetB:

Description : "Private B Subnet ID"

Value: !Ref PrivateSubnetB

Export:

Name: !Sub ${AWS::StackName}-PrivateSubnetB

PrivateSubnetC:

Description : "Private C Subnet ID"

Value: !Ref PrivateSubnetC

Export:

Name: !Sub ${AWS::StackName}-PrivateSubnetC

8. With our CloudFormation template done, we can set the Region we want to deploy it into by
setting the AWS_DEFAULT_REGION environment variable:

export AWS DEFAULT REGION=us-east-1

9. Next, we validate the template to check that there are no syntax errors:

aws cloudformation validate-template --template-body file://vpc.
yml

10. Finally, we can create a new stack from this command. Notice how we are passing the two
parameters we previously defined at the top of our template into CloudFormation. Mind the
space separating the two Parameter definitions:

aws cloudformation create-stack --stack-name
vpc-b --template-body file://vpc.yml --parameters
ParameterKey=VpcCidrPrefix, ParameterValue=10.0
ParameterKey=VpcName, ParameterValue=vpc-b

The preceding command will return a StackId, and after the stack has been created successfully,
we should be able to see our newly created VPC in the console, as shown in the following figure.

Resource map CIDRs Flow logs Tags Integrations

Resource map inta

WPC shawe datails Subnets {3) Route tables [1) Network connections {0}
Four SNS il stk Suunts wethin s e [[ER N — Cenmneelizng e st ratuscri
ypehi us-gast-1a —— M-0r75el AE402047035

B vacb-pualic |
us-gast-1h |
B vac-b-privato] ~|
us-gast-1c ‘
B vacbprivamz

Figure 3.17 — Resource map of the VPC that we have created with CloudFormation

Creating a second VPC using CloudFormation

So far, in our CloudFormation stack, we have only recreated a part of the actions we had previously
done in the AWS console. We are still missing the route table, IGW, and route table association. So,
let’s create them in CloudFormation.

Creating an IGW, route table, and subnet association

In this section, we’ll complete our CloudFormation-based setup to create the IGW and associate it
with our public subnet via the route table.

To do this, follow these steps:

1. Create afile called at tachments . yml in which we will create our CloudFormation template.

2. Define the default header and a parameter section. We'll create a parameter called
NetworkingStack that will allow us to pass in the name of our previously created stack.
This way, we can reference the outputs from that stack, such as the VPC or subnet ID:

AWSTemplateFormatVersion: "2010-09-09"

Description: "CloudFormation template to create and associate an
IGW"

Parameters:
NetworkStack:
Type: "String"

3. Define a new InternetGateway resource:

Resources:
InternetGateway:
Type: AWS::EC2::InternetGateway
Properties:
Tags:
- Key: Name
Value: !Sub ${NetworkStack}-igw

4. Next, we define a gateway attachment that will be used to attach our IGW to our VPC. Here,
we are using the Fn: : ImportValue function to import the ID of the VPC we created in
the previous stack. Recall that, in the previous stack, we defined an output that had an export
name of <stack-name>-VpcId (for example, vpc-b-VpcId). This is the name we are
piecing together here using the ! Sub function and the parameter we defined for this stack.
The ImportValue function lets us reference exported values from other stacks as if they
were defined in the current stack:

InternetGatewayAttachment:
Type: AWS::EC2::VPCGatewayAttachment
Properties:
InternetGatewayId: !Ref InternetGateway

67

68 Creating a Data Center in the Cloud Using a VPC

VpcId:
Fn::ImportValue:
1Sub ${NetworkStack}-VpcId

5. We can then create a public route table:

PublicRouteTable:
Type: AWS::EC2::RouteTable
Properties:
VpcId:
Fn::ImportValue:
1Sub ${NetworkStack}-VpcId
Tags:
- Key: Name
Value: !Sub ${NetworkStack}-public-rtb

6. So far, our route table is empty. So, we'll need to create a route and attach it to the route table.
Notice how we use the DependsOn property to make sure that CloudFormation finishes
the creation of our IGW attachment (and thus also our IGW) before creating this route
entry. We provide the destination CIDR range (0.0.0.0/0 in this example) using the
DestinationCidrBlock property and also reference the gateway ID and route table ID
using the Ref function to reference the previously created resources:

RouteToInternet:
Type: AWS::EC2::Route
DependsOn: InternetGatewayAttachment
Properties:
DestinationCidrBlock: 0.0.0.0/0
GatewayId: !Ref InternetGateway
RouteTableId: !Ref PublicRouteTable

7. Finally, we associate our route table with our previously created public subnet by importing
the subnet ID from our previous stack:

PublicRouteTableAssociation:
Type: AWS::EC2::SubnetRouteTableAssociation
Properties:
RouteTableId: !Ref PublicRouteTable
SubnetId:
Fn::ImportValue:
1Sub ${NetworkStack}-PublicSubnetA

Interconnecting VPCs via peering and Transit Gateway

8. With our CloudFormation template done, we can set the Region we want to deploy it into by
setting the AWS DEFAULT REGION environment variable. Make sure to use the same Region
you used for the previous stack:

export AWS DEFAULT REGION=us-east-1

9. Next, we validate the template to check that there are no syntax errors:

aws cloudformation validate-template --template-body file://
attachments.yml

10. Finally, we can create a new stack from this command. Notice that we are passing the previous
stack name (vpc-b in this example) as a parameter to the template:

aws cloudformation create-stack --stack-name vpc-b-attachments
--template-body file://attachments.yml --parameters
ParameterKey=NetworkStack, ParameterValue=vpc-b

Once the stack has finished completing, we can have a look at the resource map of our VPC and see
how the public subnet is now associated with the newly created routing table and that routing table
is associated with the newly created IGW.

Resourcemap | CIDRs | Flowlogs Tags Integrations

Resource map
WPE o details Subnats (3} Route tables {2} Metwork connections (1)
S s el math, bt withn this T e st Sl o s Cennastizn bz athar itk
- ws-gast-Ta — wpi-tepublicit e upe--igu
€ wpe-o-aublic - rib-OfF 521 SE4SEfTREE.
us-gast-Th |

B vpe-bonvate1
us-past-Te |

B vpc-b-private-1

Figure 3.18 - Final resource map of our CloudFormation-created VPC

So far, we have talked a lot about routing traffic from a VPC to the outside internet, but not a lot about
routing between VPCs. So, in the next section, we will discuss how to interconnect VPCs.

Interconnecting VPCs via peering and Transit Gateway

When dealing with multiple VPCs, there might come a time when we want to enable traffic to flow
between these two isolated networks. This is where VPC peering comes into play.

69

70 Creating a Data Center in the Cloud Using a VPC

VPC peering allows us to interconnect two VPCs and give resources within them to route to resources
in the other VPC as if they were in the same network. Figure 3.19 demonstrates this flow:

VPC A
Private subnet

—

VPC Peering

VPCB

Private subnet

VPC Peering

VPCC

Private subnet

Figure 3.19 - Three VPCs and their two peering connections - VPC A to VPC B and VPC B to VPC C

In the preceding figure, we have a peering between three VPCs. VPC A is peered to VPC B and VPC
B is peered to VPC C. The peering of two VPCs is always bidirectional. This means that if VPC A
requests a peering with VPC B, then VPC A can route traffic into VPC B and VPC B can route traffic

into VPC A.

Because of this routing behavior, the VPCs that we want to peer need to have non-overlapping CIDR

ranges since we otherwise could not route between them.

Creating a peering between two VPCs

For this section, we'll need two VPCs with non-overlapping CIDR ranges. Luckily, we spent the previous
chapter automating the process of creating such VPCs. Let’s use the CloudFormation template from
the previous chapter to create a new VPC with a non-overlapping CIDR range.

Interconnecting VPCs via peering and Transit Gateway

Note

If you haven't followed the previous section, you can download the CloudFormation template
from the GitHub repo for this book.

Follow these steps to create the second VPC - we will call it vpc -c - with non-overlapping CIDR
ranges. Note that we assume that you used the example CIDR range of 10.0.0.0/16 in the previous
section to create the first VPC, vpc-b. If you used a different CIDR range, please adjust accordingly:

1.

Create a new VPC using the template. We'll use the 10.1.0.0/16 CIDR range (which is
non-overlapping with the 10.0.0.0/16 CIDR range previously used) and call the vpc-c VPC:
aws cloudformation create-stack --stack-name
vpc-c --template-body file://vpc.yml --parameters

ParameterKey=VpcCidrPrefix, ParameterValue=10.1
ParameterKey=VpcName, ParameterValue=vpc-c

Next, create the attachments using our second CloudFormation template:

aws cloudformation create-stack --stack-name vpc-c-attachments
--template-body file://attachments.yml --parameters
ParameterKey=NetworkStackName, ParameterValue=vpc-c

With this done, we now have two VPCs (vpc-b and vpc-c) that have two non-overlapping
CIDR ranges (10.0.0.0/16and 10.1.0.0/16). We can now go ahead and initiate a
peering connection in the AWS console.

Navigate to the VPC dashboard and, in the left-hand navigation, find Peering connections. On
the top right, you can see a Create peering connection button that you can click on to open
the dialog to create a new peering.

In the Create peering connection dialog, type the following details into the form:

* Name: This is the name of your peering connection. You can use vpc-b-vpc-c-peering
as an example.

* VPCID (Requester): Select the requester VPC. Here, I chose vpc-Db.

* Under Select another VPC to peer with, select My account, and under Region, select This
Region (us-east-1).

71

72 Creating a Data Center in the Cloud Using a VPC

= VPCID (Accepter): Select the accepter VPC. Here, I chose vpc-c.

Peering connection settings
Nama - eymional

Crecire 50 e 3 ey 5 Bt st 2 sl BRI s ey

[pe-hapecpearrg |

Select a local VPC to peer with

VPCID {Requester)
[omitanias sttt cesss Gucb)

VP CIGRS For vpe-04T0CS SR ToE R {vpe-h)
CIoR: | smtus Saatus reason

10000418 1 masaciamed

Select anather VPC tn peer with

Amsunt

€ My acoount

3 Anoter sccount

Region

& This Beglon jus-sast-1)

(2 Anutier Regian

VP 1D {coepter)

(o275 552156521160 o) |

VP LIRS For vpe-02bT3552F56521 T80 [upech
CIoR smtus Status reason

1010046 @ Al

Figure 3.20 — Values for the peering connection

Since peerings are powerful, you can't just create a peering connection - the connection needs
to be accepted by the account owning the accepter VPC. In this example, both VPCs belong
to our one account.

After the peering connection has been created, you are redirected to a peering overview page.
On the top right, you’ll see an Actions dropdown.

5. Select Accept request to accept the peering connection.
In the modal, confirm that you want to peer these two VPCs by clicking Accept request.

Accept VPC peering connection request X

Are you sure you want to accept this VPC peering connection request? (pcx-08c3be6396ca5506b / vpc-b-vpc-c-peering)

Requester VPC Accepter VPC Requester CIDRs
vpc-0410d9556621cB56a / vpc-b vpc-02b73352f365211a0 / vpc-c [0 10.0.0.0/16
Accepter CIDRs Requester Region Accepter Reglon
- N. Virginia (us-east-1) N. Virginia (us-east-1)
Requester owner ID Accepter owner ID
=y | 0 I
(This account) (This account)
cancel (Acceptrequest

Figure 3.21 — Accept peering request modal

Interconnecting VPCs via peering and Transit Gateway

The two VPCs are successfully peered, but we can’t route traffic between them since there
are no routes allowing traffic to pass from VPC B to VPC C. To change this, let’s modify the
routing table of VPC C.

6. Find VPC C under Your VPCs and, on the resource map, click the main route table to modify
the routes in it.

7. In the route table overview, click Edit routes and Add route to create a new route.

8. We want to route all traffic for 10.0.0.0/16 (the CIDR range for VPC B) to the peering
connection. To do this, fill in the following values:

* Destination: The destination IP range. Use 10.0.0.0/16.

Target: The target for all traffic from this IP range. Use Peering Connection for Type and
select the previously created peering in the dropdown.

9. Next, click Save changes.

We have just created a route for traffic to flow from VPC C to VPC B. We'll use this peering in the
next chapter, once we have set up EC2 machines, to send traffic from one VPC to the other.

VPC peering offers a convenient way to allow traffic to flow between two VPCs. However, there are a
few limitations and caveats. Look back at Figure 3.19 where we have three VPCs. VPC A is paired to
VPC B and VPC B is paired to VPC C. One major downside of VPC Peering is that the connectivity
is not transitive. This means that just because VPC A is paired with VPC B and VPC B is paired with
VPC C, we can’t send traffic from VPC A to VPC C.

In order to achieve traffic flow from VPC A to VPC C, wed have to pair the two of them. This results
in a mesh architecture where every VPC needs to be peered with all other VPCs it should be allowed
to route traffic to. This can become too big in terms of peering connections very fast. Assuming you
have 50 VPCs that you want to peer with each other (full mesh), youd need 1,225 peering connections.
That’s a lot of work, even if automated, and also exceeds the limit of 125 active peerings per VPC.

This is where AWS Transit Gateway (TGW) comes into play.

What is AWS Transit Gateway?

In this section, you’ll get a quick introduction to AWS TGW. We'll have a closer look into TGWs,
including the setup of one that is shared between multiple accounts that we will use later in the book
in Chapter 16.

73

74

Creating a Data Center in the Cloud Using a VPC

With AWS TGW, we introduce a centralized hub-and-spoke architecture into our cloud network.
With TGW, instead of peering all our VPCs together, we attach them to our TGW, as shown in the
following figure:

. Transit Gateway }
Transit Gateway Peering Transit Gateway

Figure 3.22 — Architecture of two TGWs paired together with multiple VPCs

Besides VPCs, we can also connect TGWs to TGWs, allowing us to build complex cloud networks.
The benefit of having the TGW in the middle is that we have a central place to manage a route table
that determines how traffic is routed among our spoke VPCs.

This type of setup makes sense in a more complex multi-account environment, and we’ll thus revisit
it later in the book in Chapter 16.

So far, we have set up our VPC infrastructure, first in the AWS console and then via CloudFormation.
In this last part of this chapter, let’s programmatically check that our VPC has flow logs enabled via
Python and Boto3.

Programmatically verifying that VPC flow logs are enabled

VPC flow logs are a form of logs that capture metadata, such as the network interface, source IP
address, port, protocol, and whether the traffic was accepted or rejected. This can be useful when
diagnosing low-level network issues within our VPC.

Programmatically verifying that VPC flow logs are enabled

Flow logs aren’t enabled by default, and in this section, we’ll write a script in Python that, using the
Boto3 SDK, checks a VPC with a provided ID if flow logs are enabled. If they are not enabled, it’ll
create a log group and enable them.

Download the trustpolicy.jsonand flow log policy.json files from the GitHub
repository. These two files define the trust policy and IAM policy document for the role that is needed
to push logs flow logs into CloudWatch.

Follow these steps to create the script:

1.

Firstly, we need to create the role. Use the AWS CLI to first create the role with the attached
trust policy. Note down the ARN of the newly created role:

aws iam create-role --role-name VpcFlowLogRole --assume-role-
policy-document file://trustpolicy.json

Add the policy document, allowing this role to push logs, to the role we just created:

aws iam put-role-policy --role-name VpcFlowLogRole --policy-name
VpcFlowLogPolicy --policy-document file://flow log policy.json

Create a file called f1low_logs.py and open it in a code editor of your choice.

We'll first import the Boto3 python SDK and the client exception that will be used later to catch
errors when log groups already exist:

import boto3
from botocore.exceptions import ClientError

Next, we define the required Boto3 clients (namely one for ec2 to interact with the VPC and
one for 1ogs to interact with CloudWatch Logs). We also define a variable with the ARN of
the previously created role that will be used for log delivery:

ec2 client = boto3.client ("ec2")
logs client = boto3.client ("logs")
ROLE_ARN = "<Insert role arn here>"

Next, we create a function that checks whether a log group exists by listing all available log
groups via the name prefix:

def log group exists(log group name) :

resp = logs client.describe log
groups (logGroupNamePrefix=1og group name)

return len (resp["logGroups"]) > 0

75

76 Creating a Data Center in the Cloud Using a VPC

7. Now that we can check whether a log group exists, we need the corresponding function to
create a new log group:

def create log group (log group name) :
try:
resp = logs client.create log group (logGroupName=log
group name)

except ClientError:
raise Exception("Unable to create log group")

8. Similarly, we'll use the DescribeFlowLogs operation to check whether a VPC has flow
logs enabled. We will also create a function to create flow logs for a VPC:

def create flow_logs (vpc_id, log group name) :
resp = ec2 client.create flow logs (ResourcelIds=[vpc_ id],

ResourceType="VPC",
TrafficType="ALL",
LogGroupName=1og group

name,
DeliverLogsPermissionArn

=ROLE_ARN)

def flow logs enabled(vpc_ id) :
resp = ec2 client.describe flow logs(

Filter=[
{
"Name": "resource-id",
"Values": [
vpc_id,
1
}
1
)
return len(resp["FlowLogs"]) > 0

9. In our main function, we'll ask the user for their VPC ID to check and then go through the
process of checking whether flow logs are enabled, enabling them with a new log group if they
are not already enabled:

def main() :
vpc_id = input ("VpcId: ")
vpc_has flow logs = flow logs enabled(vpc id)
if not vpc has flow logs:
print ("Enabling flow logs")
log_group name = f£"{vpc_id}-flow-logs"
if not log group exists(log group name) :
print ("Creating new log group")

Summary

create log group (log group name)
create flow logs(vpc_id, log group name)
else:
print ("Flow logs already enabled")

if _name_ == "_main_ ":
main ()

10. Using the VPC ID of one of the previously created VPCs, run the Python script by running
the following command in your console:

python3 flow logs.py

With this script, we can now check whether flow logs are enabled and automatically enable them for
a specific VPC. We'll go deeper into CloudWatch Logs and log analysis in Chapter 10.

Summary

In this chapter, you've seen an introduction to a vital component of AWS: VPC. We have set up VPCs
and their components, such as subnets, route tables, and gateways, both using the AWS console and
via infrastructure as code in CloudFormation. We then got a quick overview of how we can allow
inter-VPC traffic via VPC peering and got insights into scaling the peering of VPCs via TGW. In the
last section, we wrote a small script to interact with our VPCs to check whether flow logs were enabled.

In this chapter, we have seen two approaches to automating infrastructure. One is the declarative
approach of CloudFormation, where we defined our infrastructure, such as VPCs, subnets, and IGWs,
and the other is the imperative approach with Boto3. Here, we explicitly wrote a Python script that
checked whether flow logs were enabled and, if not, enabled them for us.

Both of these approaches can exist together. The declarative approach is great for defining how our
infrastructure should look, while a tool such as Boto3 could be used to write automation scripts for
common workflows. Imagine you are getting a new compliance directive that all teams need to enable
flow logs on their VPCs.

You could then update your CloudFormation template to enable flow logs for a VPC and then - for
example, after the deadline for all teams to update their infrastructure has passed — use a script such
as the one seen previously to check that all teams have actually enabled flow logs.

With this understanding of VPCs and the infrastructure, we can get started with setting up some
machines in the next chapter, where we’ll look into the Elastic Cloud Compute, or EC2, service.

77

78

Join the CloudPro Newsletter with 44000+ Subscribers

Want to know what’s happening in cloud computing, DevOps, IT administration, networking, and
more? Scan the QR code to subscribe to CloudPro, our weekly newsletter for 44,000+ tech professionals

who want to stay informed and ahead of the curve.
]
]

https://packt.link/cloudpro

https://packt.link/cloudpro

4

Scalable Compute Capacity in
the Cloud via EC2

In the previous chapters, we set up our network in the cloud. But, so far, this virtual private cloud
(VPC) is pretty empty. In this chapter, we will fill our data center in the cloud with virtual machines,
called instances in AWS terminology, by using the Elastic Compute Cloud (EC2) service.

Amazon EC2 was one of the first AWS services to be introduced. In a nutshell, it offers the ability to
deploy compute capacity in the form of virtual machines, called instances, in the cloud. The keyword
in the service description is elastic. Instead of requiring you to rent a virtual machine for a set term,
such as one year, EC2 lets you spin up and down new instances as you need them. This enables your
application to handle changes in demand smoothly and only pay for the amount of compute you have
consumed. This pay-as-you-go model is the basis of the cloud. This elasticity not only extends to the
number of instances (the horizontal scaling) but also to the size of the instance. We can easily spin up
an instance that has 4 CPUs and 32 GB of RAM. But if we need (and have the money to pay for) it,
AWS will also give us an instance with 192 CPUs and 1.5 TB of memory (the r7i.48xlarge instance).
With 600+ (at the time of writing) instance types, EC2 allows us to select the right combination of
CPUs, memory, and storage for our use case.

In this chapter, we'll first set up an EC2 instance in the AWS Console before automating the process
using CloudFormation. Next, we'll look into cost management by enabling a billing alarm. Finally,
we'll write automation scripts to take care of common administrative tasks like shutting off instances.

We will cover the following topics in this chapter:

o Setting up EC2 instances in the AWS Console as well as with Infrastructure-as-Code
o Creating an AWS billing alert to keep informed about our budget

o Writing administrative scripts for common tasks like shutting down all instances or removing
unattached EBS volumes

80

Scalable Compute Capacity in the Cloud via EC2

Technical requirements

To get the most out of this chapter, you should have a basic knowledge of the Amazon EC2 service.
An understanding of broader terms, such as virtual machines, hypervisor, and block storage, are
helpful as well.

You should also have CloudFormation setup according to the instructions in Chapter 1.
The solution scripts for this chapter can be found at the following link:

https://github.com/PacktPublishing/AWS-for-System-Administrators-
Second-Edition

The CiA video for this chapter can be found at ht tps://packt.link/chK2n

Setting up EC2 instances

In this section, we are going to set up an EC2 instance. First, we are going to use the AWS Console before
doing the same via Infrastructure-as-Code in Terraform. Before getting started with the provisioning
of instances, we'll cover some basic vocabulary and concepts for the EC2 service.

A few EC2 concepts

In EC2, there are a few concepts and names that you’ll come across regardless of whether you are
dealing with the provisioning of instances in the AWS Console or via Infrastructure-as-Code tools.

Here are a few acronyms/names and their definitions:

o Amazon Machine Image (AMI): This is an image, similar to an ISO image, that contains the
required information, including the operating system, applications, and application configuration,
that is required to launch an instance. You can either use Amazon-provided AMIs or create
your own AMIs.

o Instance type: This defines the type of instance you are launching. As mentioned earlier, AWS
has 600+ different types of instances that differ in memory, CPU, or other performance metrics
such as the availability of a high-bandwidth network interface.

« EBS volume: This is a type of block storage that can be attached to an instance. This is similar
to a hard disk on a physical server. EBS stands for Elastic Block Storage.

Using the AWS Console to create an EC2 instance

The easiest way to set up an EC2 instance is by using the AWS Console.

https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition
https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition
https://packt.link/chK2n

Setting up EC2 instances

Note

Be careful! You are launching actual compute resources that will be billed to you by AWS.

To launch an instance, follow these steps:
1. Navigate to the EC2 console by either searching for EC2 in the search bar or navigating
tohttps://us-east-1.console.aws.amazon.com/ecs/v2/home.

2. Inthe left-hand navigation, select Instance and then select Launch Instance in the top right.

Launch instance
To get started, launch an Amazon EC2 instance, which is a virtual server in
the cloud.

Launchinstance ¥ (Migrate a server E)

Note: Your instances will launch in the United States (N. Virginia) Region

Figure 4.1 — Start the dialog to launch an instance

3. You’'ll be presented with a configuration dialog. First, set a name for your instance such
as packt-sample.

4. In the next interface, you’ll have to select the AMI to use for your instance. In the interface,
you can see a variety of operating systems, from Amazon Linux, an Amazon-provided Linux
distribution, to Ubuntu and Red Hat Linux. Besides Linux, you can also choose Windows or
Mac OS X. Notice that not all operating systems are available on all instance types. Mac OS
with an x86 processor is only available on macl.metal instance types, for example.

Note

The suffix .metal on an instance type means that this is the entire bare metal server and is not
a virtualized part of an underlying bare metal server.

The following figure shows the operating system selection dialog in the wizard. Here, we can
select the type of AMI we want to use and then select the processor architecture as well as the
specific version of the OS.

81

https://us-east-1.console.aws.amazon.com/ecs/v2/home

82 Scalable Compute Capacity in the Cloud via EC2

¥ Application and OS Images (Amazon Machine Image) i

An AMI is a template that contains the software configuration {operating system, application server, and applications) required to launch your Instance. Search or
Browse for AMIs If you don't see what you are looking for below

[Q, Search our full catalog including 1000s of application and OS5 images]
Quick Start
T T T T T |
Amazon macs Ubuntu Windaws Red Hat SUSE Linux Debian Q
Linux

Browse more AMis
aws L: o || Wi 4 o including AMis from
el . t: ubuntu B Microsoft || fff RedHat ﬁs S AWiS, Marketplace and

the Community

Amazon Machine Image (AMI)

Amazon Linux 2023 AMI Free tier eligible
ami-00a929b66edEe0des (64-bit (xB6), uefi-preferred) / ami-05f417c208be02d4d (B4-bit (Arm), vefi)
Virtuatization: hvm ENA enabled: true Root device type: ebs

v

Deseription
Amazon Linux 2023 is a modern, general purpose Linux-based OS that comes with 5 years of long term support. It is optimized for AWS and designed to provide a
secure, stable and high-performance execution environment to develop and run your cloud applications.

Amazon Linux 2023 AMI 2023.7.20250331.0 xB86_64 HVM kernel-6.1

Architecture Boot mode AMI ID Publish Date Username ()

64-bit (x86) v || vefi-preferred ami-00a929b66ed6e0des 2025-03-29 ec2-user

Figure 4.2 - Selecting the correct operating system, AMI, and CPU architecture

As you can see in the preceding figure, you can also select a processor architecture. The choice
of processor architecture will also influence the selection of instances. For this first example,
we'll go with the 64-bit (x86) architecture.

Copy the AMI ID that is shown on your screen and save it for later since we'll need it when
provisioning the same instance via Infrastructure-as-Code.

Note

AWS has its own ARM-based processor family called Graviton. It's an energy-efficient chip that
offers great price performance. If you are running an application that can run on ARM—for
example, Java applications can often be run easily and without rewrites on ARM—the Graviton
instances may be cheaper than Intel or AMD-based instances. You can identify the Graviton

instance families by the g in their name, for example, r8g.
L)

5. Next, select the instance type. For this example, we are going to go with the inexpensive t2.micro
instance, which provides 1 vCPU and 1 GiB of memory.

Setting up EC2 instances

¥ Instance type info | Get advice

Instance type
tZ.micro Free tier eligible
Family: 12 1vCPU 1 GiB Memary Current generation: true (B All generations
On-Demand Windows base pricing: 0.0162 ¢ On-Demand Ubuntu Pro base pricing: 0.0134 USD per Hour v
On-Bemand SUSE base pricing: 0.0116 USD ©On-Demand RHEL base pricing: 0.026 USD per Hour Compare Instance types

On-Demand Linux base pricing: 0.07116 USD per Hour

Additional costs apply for AMIs with pre-installed software

Figure 4.3 — Selected instance type

6. Inorder to be able to SSH into our instance, we need to provide a key pair. If you already have
a key pair, you can select it from the dropdown. Otherwise, click the Create new key pair
link, as shown in Figure 4.4. This will open up a dialog to create a new key pair. If you are on
a Windows machine and use PuTTy to establish SSH connections, select the .ppk format for
the Private key file format. If you are on a Unix-like operating system such as Mac OS X or
Linux, select .pem. Notice that you’ll be prompted to download your private key. Make sure
to keep that file since you won't be able to download the private key again and we’ll use it to
connect to the machine.

Create key pair X

Key pair name
Key pairs allow you to connect to your instance securely.

[packt-key J

The name can include up to 255 ASCII characters. It can't include leading or trailing spaces.

Key pair type

© RsA () ED25519
RSA encrypted private and public key ED25519 encrypted private and public
pair key pair

Private key file format
© .pem

For use with OpenSSH

QO .ppk

For use with PuTTY

/N When prompted, store the private key in a secure and accessible location on
your camputer. You will need it later to connect to your instance. Learn
more [2

Cancel createkeypalr .

4

Figure 4.4 - Dialog to create a new key pair

83

84

Scalable Compute Capacity in the Cloud via EC2

7. Speaking of SSH, we next need to define the network settings for our instance. An instance
is always deployed into a subnet of a VPC. By default, AWS will deploy the instance into the
default VPC and will use a random subnet. For now, we'll leave these default settings.

We'll also choose Enable for the Auto-assign public IP setting. This means that AWS will allocate
a public IPv4 address for our instance that we can then use to connect to the instance via SSH.

¥ Network settings i

Network | Infa
vpe-Obafebfh7e80f7d65
Subnet info

No preference {Default subnet in any avallability zone)

Auto-assign public IP | info
Enable
Additienal charges apply when outside of free tier allowance

Firewall (security groups) info
A security group is a set of firewall rules that control the traffic for your Instance. Add rules 1o allow specific traffic to reach your instance,

© Create security group] [(0 Select existing security group]

We'll create a new security group called 'launch-wizard-3" with the following rules:

Allow S5H traffic from Anywhere
Helps yau connect Lo your instance 2.0.0.0/0 ¥

] Allow HTTPS traffic from the internet

T set up an endpaint, for example whon creating 2 web server

] Allow HTTP traffic from the internet

Yo set up an endpaint, far example when creating a web server

(& Rules with source of 0.0.0.0/0 allow all IP addresses to access your instance. We recommend setting security group rules to allow access from X
known |F addresses only.

Figure 4.5 — Values for the network settings

In the network settings, we are also creating a security group. Security groups are virtual
firewalls that we can use to control the inbound and outbound traffic of our instance. You can
either add an instance to an existing security group or have the wizard create a new security
group for you. The following figure shows a security group in the AWS Console with its inbound
rules selected.

T

5g-0935ced68666b3207 - default {_atons -_)

Datails

Secursy reun mame Serurity graup & Descriptlen weCID

T cetoult [REER L D cetoult vPC soourcy croup B spef2aatassieg [

owner Inbound mules cowse Outbaund rulcs coent

= [| Perison ey | Feniission amry

Inbound rules | Uutboundrules sharing - pew WL assoriations new Tags

T satc it viss

Inbaund rulos (1}

[sened] 1 @
L | Mam = | Scosrhygrousrde i v | IR weslon v | Type v Pretoml T | PwTreRe v | Seurce = | besolpden
[s - Azt A a W OHSELIL . -

Figure 4.6 — Picture of a security group within the AWS Console

Setting up EC2 instances

A security group is made up of inbound rules and outbound rules. Inbound rules specify what
type of traffic—for example, all TCP or all UDP—on what port range and from what source
is allowed to enter instances that are attached to this security group. By default, all protocols
that are not explicitly allowed in a security group are implicitly denied.

Similar to how inbound rules control all traffic coming into the instance, outbound rules define
what traffic can leave the instance. Instead of a source, they define the destination of the traffic.

The launch wizard for our instance gives you options to attach common rules, such as allowing
SSH trafhic (on port 22) to our instance.

With our network configured, we next need to configure our block storage. An instance requires
an unencrypted root volume. In the Configure storage section, you can see the default root
volume with 8 GiB of gp3 storage (Figure 4.7).

¥ Configure storage i Advanced
hH [8 4 | Gle [gp3 v) Root volume, 3000 IOPS, Notencrypted

[() Free tier eligible customers can get up to 30 GB of EBS General Purpose (S5D) or Magnetic storage X]
(@) Click refresh to view backup Information c
The tags that you assign determine whether the Instance will be backed up by any Data Llfecy:io Manager palicles.

0 x File systems Edit

Figure 4.7 - Storage configuration

EBS offers a variety of different options when creating storage devices. The most common types
of storage are the General Purpose SSD 2 and General Purpose SSD 3, or gp2 and gp3. These
are cost-effective when used for typical applications.

Provisioned IOPS SSDs (iol and i02) are volume types best suited for I/O-intensive workloads.
A classic example is databases.

Both the provisioned IOPS SSDs and General-Purpose SSDs support a configuration option called
IOPS. IOPS defines the number of input/output operations that the volume should be able to
support every second. For I/O-intensive workloads, tweaking this number can become crucial.

Besides SSD-based storage, you can also select HDD-based storage with Throughput Optimized
HDD (st1) and Cold HDD (scl). These are inexpensive magnetic storage volumes that provide
storage with lower throughput and are thus a good fit for applications that might need to store
a large amount of data but that do not require fast access to that data.

For our root volume, we'll leave it at 8 GiB of gp3 storage.

85

86 Scalable Compute Capacity in the Cloud via EC2

9. With our volume configured, we can now go over the Summary screen. Here, we can select the
number of instances that we want to launch based on our configuration. Leave the number of
instances at 1 since we only want to launch one instance in this scenario to keep the cost down.

In the AWS Console, you'll then find a summary of all our selections as well as the Launch
instance button. The following figure shows that summary based on the selections we have made.

¥ Summary

Number of instances | info
[1

Software Image (AMI)

Amazon Linux 2023 AM| 2023.7.2...read more
ami-00a929b66ed6e0des

<>
L —

Virtual server type (instance type)
t2.micro

Firewall (security group)
New security group

Storage (volumes)
1 volume(s) - 8 GiB

'd N

@ Freetier: In your first year of opening an AWS account, you X
get 750 hours per month of t2.micro instance usage (or
t3.micro where t2.micro isn't available) when used with free
tier AMIs, 750 hours per month of public IPv4 address
usage, 30 GIB of EBS storage, 2 million 1/0s, 1 GB of
snapshots, and 100 GB of bandwidth to the internet.

Cancel

G7 Preview code

Figure 4.8 — Summary of our instance launch

10. After launching your instance, youll be presented with a green dialog box indicating the
instance ID.

@ Success
Successfully Initiated launch of instance (i-0aB807397669f04c20)

Figure 4.9 — Banner indicating the successful launch of the instance

Setting up EC2 instances

You'll be presented with an overview of all the instance details. In the top right are your actions
and toggles to change the instance state. The instance state dropdown allows you to stop, reboot,
or terminate the instance.

11. In the overview, you can also see the Auto-assigned public IP address. Copy this address as
we are going to use it to SSH into the instance.

Instance summary for i-Ob5ac5e181191d771 (packt-test)
Updated less than a minute ago

Instance ID
I0) i-0bSac5e181191d771

IPv6 address

Hostname type
IP name: ip-172-31-26-243.ec2.Internal

Answer private resource DNS name
IPv4 (A)

Auto-assigned IP address
IC] 34.229.79.203 [Public IP]

IAM Role

IMDSv2
Required

Operator

Figure 4.10 - Details of our instance, including the public IPv4 address
12. Inyour terminal, first change the file permissions of your previously downloaded key to 400
(which allows only the user to read it):

chmod 400 <path_to_ key>

13. To log into your instance, you'll need the username. This is specific to AMI and can be found
on the documentation page for the AMI you chose. For Amazon Linux, the username is
ec2-user. Use the SSH key and the public IP address of your instance to connect:

ssh -1 <path to key> ec2-user@<public-ip>

87

88

Scalable Compute Capacity in the Cloud via EC2

14. After you have connected to your instance and played around with it, we need to terminate
the instance. To do so, navigate back to the details page for your instance and, in the top-right
corner in the Instance State dropdown, choose Stop Instance. This will put the instance into
a stopped state. You can terminate the instance. This will delete the instance and, by default,
also the attached EBS volumes. Any data stored on that volume will be lost.

So far, you have seen how to create an instance in the AWS Console, and while this process is easy, it
is hard to reproduce, and if you need to launch a bunch of instances, it can be cumbersome.

This is why, in the next section, we are going to learn how to create instances using CloudFormation.

Using CloudFormation to create an EC2 instance

In this section, we'll be creating an EC2 instance and putting it into the VPC that was created via
CloudFormation in the previous chapter.

(1
Note
If you haven't followed the previous chapter’s instructions, please run the CloudFormation
template available at:
https://github.com/PacktPublishing/AWS-for-System-Administrators-
Second-Edition/blob/main/ch03/vpc.yml

- J

Throughout the book, we switch between Terraform and CloudFormation to showcase these two
different tools. The concepts and resources you have to create are the same.

(R
Note

This example uses CloudFormation. If you are up for a challenge, try reading through the following
CloudFormation template and then recreate it using Terraform instead of CloudFormation.

The documentation for the AWS Terraform Provider (which you can find at https://
registry.terraform.io/providers/hashicorp/aws/latest/docs) will
be useful for identifying the names of the Terraform resources to use.

Whether you have taken the challenge to implement a version in Terraform or not, the GitHub
repository of this book contains a Terraform script that deploys the same infrastructure as this
CloudFormation template. You can compare the two if you want.

. J

Let’s go step by step and write the CloudFormation required to start and instance into the public
subnet of our VPC:

1. Createafile called instance.yml that will contain our CloudFormation template.

https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition/blob/main/ch03/vpc.yml
https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition/blob/main/ch03/vpc.yml
https://registry.terraform.io/providers/hashicorp/aws/latest/docs
https://registry.terraform.io/providers/hashicorp/aws/latest/docs

Setting up EC2 instances

Start by defining the CloudFormation-required properties, such as the template version and
the description of the stack:

AWSTemplateFormatVersion: "2010-09-09"

Description: "CloudFormation template to create an EC2 instance
in a VPC"

Next, we define a parameter: NetworkStack. This will be the name of the stack in which
we ran the provisioning of our VPC in the previous chapter:

Parameters:
NetworkStack:
Type: "String"

Description: "Name of the networking stack that created our
VPC"

Now, we are ready to define some resources. We'll start by defining our security group that
allows SSH traffic from anywhere in the internet:

SecurityGroupSSHAllow:
Type: AWS::EC2::SecurityGroup
Properties:
GroupName: instance-sg
GroupDescription: "Instance SG from CloudFormation"
SecurityGroupIngress:
- IpProtocol: tcp
FromPort: 22
ToPort: 22
CidrIp: 0.0.0.0/0
Description: "Allow SSH traffic into our instance"
VpcId:
Fn::ImportValue:
1Sub ${NetworkStack}-VpcId

We first define some informational properties, such as the GroupName and GroupDescription.
Next, we define the list of inbound (or Ingress) rules via the SecurityGroupIngress
property. We define that all TCP traffic directed to port 22 from the CIDR range 0.0.0.0/0
(which is all IPv4 addresses) is allowed.

Like our example in the console, this security group does not have any outbound (or egress)
rules attached.

With the security group ready, we can provision our instance. We first need to define the
Availability Zone we want to deploy the instance into. Since our public subnet is provisioned
in the Availability Zone A, we'll use us-east -1a here:

Instance:

89

90 Scalable Compute Capacity in the Cloud via EC2

Type: AWS::EC2::Instance
Properties:
AvailabilityZone: "us-east-la"

6. Next, we define our block device. This will be our EBS volume that is mapped into /dev/sdal.
We define an EBS volume with 8 GiB of size and of volume type gp2. We also specify that, upon
termination of the instance that this EBS volume is attached to, the volume should be deleted:

BlockDeviceMappings:
- DeviceName: "/dev/sdal"
Ebs:

DeleteOnTermination: true
VolumeSize: 8
VolumeType: gp2

7. Next, we define the AMI that we want to use. Use the AMI ID you copied previously:

ImageId: "ami-01b799c439fd5516a"

8. Next, we can select the instance type. In this example, we are going to use the same t2 . micro
type that we also used in the console:

InstanceType: "t2.micro"

9. Finally, we need to define a network interface that is attached to this instance. We assign it to
the public subnet that this instance will also be deployed into and attach the previously created
security group to it:

NetworkInterfaces:
- Description: "Primary ENI"
DeviceIndex: 0
SubnetId:
Fn::ImportValue:
1Sub ${NetworkStack}-PublicSubneta
GroupSet:
- Ref: SecurityGroupSSHAllow

Network interfaces in AWS are also called Elastic Network Interfaces (ENIs).

10. Make sure that you are in the same region as your previously created VPC by setting the
corresponding environment variable:

export AWS DEFAULT REGION=us-east-1

Creating a cost alert using budgets

11. Validate the template to verify that there are no syntax errors. To do this, we can use the validate-
template sub-command of the CloudFormation command in the AWS CLI:

aws cloudformation validate-template --template-body file://
instance.yml

"Parameters": [
"ParameterKey": "NetworkStack",
"NoEcho": false,
"Description": "Name of the networking stack that
created our VPC"
] I
"Description": "CloudFormation template to create an EC2
instance in a VPC"

12. Finally, create the stack using the create-stack command. Pass the name of your previously
created networking stack (in this case, vpc-c) in as a parameter:

aws cloudformation create-stack --stack-name instance
--template-body file://instance.yml --parameters
ParameterKey=NetworkStack, ParameterValue=vpc-c

You can now navigate to the overview of instances (https://us-east-1.console.aws.
amazon.com/ec2/v2/home?region=us-east-1#Instances: sort=instanceId)
and follow the creation of your newly launched instance.

We have now created instances both in the AWS Console and from CloudFormation. As you can see,
it is quite easy to create instances, and we have learned that you’ll be billed for every instance that is
running. In the next section, we’ll see how you can create an alert that triggers when a cost threshold
is passed. This can help you recognize that unneeded infrastructure, such as an unused instance, is
running in your account.

Creating a cost alert using budgets

Due to the dynamic nature of pricing in AWS, it can be beneficial to set up alerts that send you a
notification whenever your billing crosses a certain threshold. This can be useful to detect unusual
spending in your production account or to make sure that you don’t accidentally get a huge bill when
playing around with AWS in your private account.

91

file://instance.yml
file://instance.yml
file://instance.yml
https://us-east-1.console.aws.amazon.com/ec2/v2/home?region=us-east-1#Instances:sort=instanceId
https://us-east-1.console.aws.amazon.com/ec2/v2/home?region=us-east-1#Instances:sort=instanceId

92 Scalable Compute Capacity in the Cloud via EC2

Follow these steps to set up a billing alert:

1. Loginto the AWS Console and, in the top-right menu, click on your name. In the drop-down,
you should see a menu item called Billing and Cost Management. Select this service.

E 49; @ @ N. Virginia ¥

+ Add widgets Account ID:

. Account
application e

Organization

Service Quotas

]

1

Security credentials

ginating account

Figure 4.11 - Billing and Cost Management in the User dropdown

2. Inthe left-hand menu, under Budgets and Planning, select the Budgets menu item. In the
top-right, click the orange Create budget button.

3. Under Budget Setup, select Use a template (simplified).
4. Under Templates, you have a selection of budget templates. Select Monthly cost budget here.

Templates - new

Choose a template that best matches your use case.

@ Zero spend budget > Monthly cost budget
Create a budget that notifies you once your Create a monthly budget that notifies you if you
spending exceeds $0.07 which is above the AWS exceed, or are forecasted to exceed, the budget
Free Tier limits. amount.

%

() Dally Savings Plans coverage budget > Daily reservation utilization budget

Create a coverage budget for your Savings Plans Create a utilization budget for your reservations
that notifies you when you fall below the that notifies you when you fall below the
defined target. defined target.

Figure 4.12 - Selection of budget templates

Creating a cost alert using budgets

Let’s learn about all the options:

o Zero spend budget: This will alert you as soon as you exceed the AWS Free Tier. This alert
will trigger when your account bills more than $0.00 and is useful if you want to stay within
the free tier.

o Monthly cost budget: This will let you specify a set dollar amount and, when either your bill
or your forecasted month-end bill exceeds this threshold, you’ll be notified.

« The Daily Savings Plans coverage budget and Daily reservation utilization budget are two
types of budgets that act on two different pricing models available in AWS.

Note

In order to encourage hands-on experience with the services, AWS offers a Free Tier on many
of them. Visithttps://aws.amazon.com/free/ to get an overview of what is available
for free in AWS.

Before continuing with setting up our budget, let’s take a quick excursion into pricing models and
find out what Savings Plans are.

So far, we have seen the on-demand nature of AWS. When choosing, for example, a compute instance,
we used the pay-as-you-go pricing and were billed for the amount of time we used the instance. This
is a great billing model when we are experimenting or for very spiky workloads, but what if you know
that for a set period of time you’ll require this number of instances? This is where Reserved Instances
and Savings Plan come into play.

Reserved Instances allow you to enter into a contract with AWS where, for a period of one or three
years, you commit to using an instance family. You'll pay the price for that instance regardless of
whether you use it or not. In exchange, you'll get a discount (up to 72% compared to the on-demand
price). So, for steady, predictable load, Reserved Instances offer a way to optimize your spending.

Instead of committing to a Reserved Instance (or RI) you can also use a Compute Savings Plan. The
setup is similar to reserved instances where, in exchange for committing to pay for a certain amount
of compute power, you’'ll get discounted rates. In comparison to Reserved Instances, Compute Savings
Plans are not specific to an instance/instance family but rather count all types of compute (such as
EC2 instances, AWS Fargate, or AWS Lambda). In essence, with a Compute Savings Plan, you commit
to buying a certain amount of compute from AWS (measured in $/hour) and get a discounted rate
on that compute in exchange.

Let’s go back to our setup now:

1. Enter a name for your budget under Budget name. Next, enter your threshold, such as 5
dollars, under Enter your budgeted amount ($). AWS will show you your last month’s
spend to give you an idea of what a suitable threshold might be.

93

https://aws.amazon.com/free/

94 Scalable Compute Capacity in the Cloud via EC2

2. Next, specify the list of e-mail addresses you want to send this budget alert to:

Monthly cost budget - Template

Budget name
Provide a descriptive name for this budget.

‘ My Monthly Cost Budget ‘

Mames must be between 1-100 characters.

Enter your budgeted amount ($)
Last month's cost: $3.78

‘ 100 ‘

Email recipients
Specify the email recipients you want te natify when the threshold has exceeded.

Separate emall addresses using commas

#

Maximum number of email recipients is 10.

Scope
All AWS services are In scope in this budget.

@ You will be notified when 1) your actual spend reaches 85% 2) your actual spend reaches
100% 3) if your forecasted spend is expected to reach 100%.

¥ Template settings

This template has default configuratiens that can be changed later. To change any of these settings, see
Custom. You can also download this template in JSON.

Cancel

Figure 4.13 - Details for the billing alert

3. Once you have filled in all the information, click Create Budget to create your new budget.
AWS will then send three tiers of emails:

* The first e-mail is sent when your actual spend reaches 85% of your budget
* The second e-mail is sent when your actual spend reaches 100% of your budget

* The third e-mail is sent when your forecasted spend reaches 100% of your budget

Creating a cost alert using budgets

Reacting to the e-mail for when your budget exceeds 85% should leave you with enough time to shut
down resources causing unwanted costs. Notice that this is purely a notification. Even if you exceed
your threshold, there won't be any automated measures taken to shut down instances or reduce costs
on your behalf.

Automatically shutting down instances

One effective method to cut your AWS bill is to shut down unused instances during times of low usage.
We'll see how you can automatically scale your compute capacity up and down based on load in the
next chapter, but there are examples where we can completely stop instances.

A classic example is testing and integration environments. During the workday, the development
teams need these environments to test their changes, but after hours and on the weekend it can be a
great cost-saver to shut them down.

In this section, we’ll write a script that checks for running instances in all regions and stops them.
However, we do not want to just stop all of our instances. Instead, we want to be able to specify whether
or not an instance should be shut down upon this script running or not.

To do this, we’ll use a tag. Tags are key-value pairs that are used all over AWS to provide
user-defined metadata.

Follow these steps to create an automated shutdown script:

1. Inside the AWS Console, find a running instance and navigate to the detail page. On the detail
page, you’'ll find the Tags tab (see Figure 4.14).

EC2 > Instances > I-038d043bOEI916745

Instance summary for i-038d049b06f916748 (tag-test) wfo C Connect Instance state v Actions ¥
Updated 1 minute ago

Instance iD Public IPv4 address Private IPv4 addresses

(9 -038d049bO6916748 (tag-test) 54.160.239.201 | open address [G 172.31.2267

1PV6 address. Instance state Public IPv4 DNS

- @ stopping O ecz- compute-1. | ddress [
Hostname type Private IP DNS name (Pv4 only)

IP name: Ip-172-31-22-67.ecZinternal 1p-172-31-22-67.ecZinternal

Answer private resource DNS name Instance type Elastic IP addresses

1Pvd (A) t2.micro -

Auto-assigned IP address VPCID AWS Compute Optimizer finding

54.160.239.201 [Public IP] vpc-ObBfcBIbTeB0M7dES (4 (@ Opt-in ta AWS Compute Optimizer for recommendatians. | Learn more [4

1AM Role Subnet ID Auto Scaling Group name
= (9 subnet-0913981f3a68410f3 [=

MDSV2 Instance ARN
Required am:awsiec: 131 16748
Details Status and alarms Monitoring Security Networking Storage
-
| | 1 @
Key | vatue
Name tag-test
shutdown-... dev

Figure 4.14 - Tags overview in the instance details

95

96

Scalable Compute Capacity in the Cloud via EC2

Select Manage tags and click Add new tag in the Manage tags dialog.

You can give your tag any Key you want. For this example, I have chosen shutdown-group.
For the value, you could—for example—define two different groups. All resources with a
shutdown-group value of dev will be shut down every evening. Resources with a shutdown-

group value of prod won’t be touched.

Manage tags info

Atag is a custom label that you assign to an AWS resource. You can use tags to help organize and identify your instances.

Key Value - optional
‘ Q, Name X ‘ ‘ Q, tag-test X ‘ ‘ Remove ‘
‘ Q shutdown-group X ‘ ‘ Q dev X ‘ ‘ Remove ‘

Add new tag

You can add up to 48 more tags.

Cancel Save

Figure 4.15 - Shutdown tags settings

With our instance tagged, we can get started on the script. Create a new file called check
instances.py.

First, we need to import boto3, the AWS SDK for Python, and then we need to create an EC2

client. We'll use this client to get the names of all the regions that our account has access to:

import boto3
ec2 _client = boto3.client ("ec2")

Next, we iterate over the names of all regions and print out the region we are currently checking
for debug purposes:

for region in ec2 client.describe regions() ["Regions"]:
region name = region["RegionName"]
print (£"Checking instances in {region name}")

For each of the regions, well then create an ec2 resource. Remember that resources are a
higher-level abstraction than the previously used ec2 client:

ec2_resource = boto3.resource("ec2", region name=region name)

Creating a cost alert using budgets

8. We want to filter all running instances. We can use a filter on the instance-state-name

property to do this:
running = ec2 resource.instances.filter (Filters=[{
"Name": "instance-state-name",
"Values": ["running"]

1)

9. Next, we iterate over all of the running instances:

for i in running:

10. With the instance object, we also get the tags so finally we can iterate over all tags that are
attached to this instance and check whether they have the shutdown-group tag with a
value of dev attached to it. If this is the case, we stop the instance:

for tag in i.tags:

if tag["Key"] == "shutdown-group" and tag["Value"]
== "dev":

print (£"Stopping instance with id {i.id}")
i.stop()

11. We can now execute this script by running the following command. Your output will differ
based on the region your instance is deployed into and the ID of your instance:

python3 check instances.py
Checking instances in us-east-1
Stopping instance with id 1-038d049b06£f916748

In this example, you have seen how to handle a common admin task, the automated shutdown of
instances, based on tags with a Python script. In the next section, you'll see another such cleanup task
where we detect unattached EBS volumes. We'll revisit these topics when talking about managing
multi-account environments for larger organizations.

Identifying unattached EBS Volumes with boto3

When it comes to EC2 a sometimes overlooked cost driver are EBS volumes. An EBS volume is usually
attached to an instance; however, it doesn’t have to be. This means that the life cycle of an EBS volume
is independent of the instance it was created for.

In the CloudFormation example, when we created the instance, we saw a flag called DeleteOnTermination
in the EBS section. This flag indicates that the EBS volume should be deleted whenever the instance
is terminated. However, what if this flag was not properly set? In that case, unattached EBS volumes
will continue to bill despite the instance they were originally attached to being long gone.

97

98

Scalable Compute Capacity in the Cloud via EC2

In this final section, we'll write a script to identify any detached EBS volumes. Once we have detected
a detached volume, we'll create a snapshot of that volume before deleting it.

A snapshot of a volume represents the state of the EBS volume at the time the snapshot was taken.
It’s effectively a copy of the volume that is stored in Amazon S3. When creating a new EBS volume,
we can create it from a snapshot. This means that if the script deletes an unattached resource that was
needed after all, we can still restore it.

Before we write the script, we need to create an unattached EBS volume to work with:

1. Inorder for our script to return anything, we'll need an unattached EBS volume. To create one,
open the AWS Console and navigate to the EC2 service. In the left menu, find the Volumes
entry under Elastic Block Store.

2. You should see a bunch of volumes that all have the Volume State of In-Use. In the top right,
click the Create volume button.

3. Choose any Volume type that you want (gp3 in this example), a Size of your liking (10 GiB
in this example), and suitable IOPS, Throughput, and Availability Zone.

Volume settings

Volume type Info

! General Purpose 55D (gp3) v

(@ General Purpose SSD gp3 is now the default selection, gp3 provides up to 20% lower cost per GB than
gp2. Learn Mare [

Size (GIB} info

10 |

Min: 1 GIB, Max: 16334 GiB. The value must be an integer
IOPS Info

| 3000 |

Min: 3000 I0PS, Max: 16000 10PS, The value must be an integer

Throughput (MIB/s) Info

| 125

Min: 125 MiB, Max: 1000 MiB. Baseline: 125 Mig/s.
Avallability Zone info

| us-east-1a v

Snapshot ID - optional Info

| Don't ereate volume from a snapshot v (&

Encryption Info

Use Amazon EBS encryption as an encryption solution for yaur EBS resources assoclated with your EC2 instances

] Encrypt this volume

Figure 4.16 — Options for the newly created EBS volume

Creating a cost alert using budgets

10.

11.

12.

Click Create Volume in the bottom right. You should now see a new volume with a Volume
state of Available.

Create a new script called check ebs.py and open it.

First, we need to import boto3, the AWS SDK for Python, and then create an EC2 client and
get all the regions our account has access to:

import boto3
ec2 client = boto3.client ("ec2")

Next, we iterate over all regions and print the current region out:

for region in ec2 client.describe regions() ["Regions"]:
region name = region["RegionName"]
print (£"Checking volumes in {region name}")

For each of the regions, we'll then create an ec2 resource:

ec2 resource = boto3.resource("ec2", region name=region name)

Similar to our EC2 instance filtering before, we'll filter for all unattached volumes by checking
that their status is available:

unattached = ec2_resource.volumes.filter(Filters:[{
"Name": "status",
"Values": ["available"]
1)
Next, we iterate over all unat tached volumes and get an object representation of that volume:
for vol in unattached:
v = ec2_resource.Volume (vol.id)

We can then use the create snapshot () method of our volume to create the snapshot:

snap = v.create snapshot ()

With the snapshot taken, we can delete the volume:

print (£"Snapshot of {v.id} taken as {snap.id}. Deleting the
volume.")

v.delete ()

99

100

Scalable Compute Capacity in the Cloud via EC2

13. You can run this script by typing the following command:

python3 check ebs.py
Checking volumes in us-east-1

Snapshot of vol-089a056fea2e2b799 taken as snap-
049df9f282a6795a6. Deleting the volume.

Snapshot of vol-0692c27eaa7527ad3 taken as snap-
0el78f965f23d6efd. Deleting the volume.

In this section, you have seen how to safely delete unused EBS volumes after taking a snapshot in
case you still require the data after all. This is an example of a common admin task that can easily be
automated by using the AWS APIs and Python.

Summary

In this chapter, we have covered the basics of EC2. We have seen how to create instances in the
AWS Console and via Infrastructure-as-Code by writing and then deploying a CloudFormation
template. Finally, we looked into setting up a budget alert as well as writing scripts to handle common
administrative tasks such as shutting down instances automatically or deleting unused volumes after
taking a snapshot.

In the next two chapters, we'll see how the elasticity of EC2 can be used automatically. Adding more
servers as the demand on our application increased and then automatically scaling down the number of
servers as the load decreases while evenly distributing, or load balancing, between our available instances.

As you can see, EC2 is the basis for many of the benefits that come with the cloud, and in the next
chapters, we'll put that to use to deploy a scalable application.

Part 3:
Scalability and Elasticity of our
Cloud Infrastructure

In this part, we'll introduce scalability and elasticity to our infrastructure. Through the use of elastic
load balancing, auto scaling groups, and RDS for relational databases, you'll be equipped with the
services required to deploy scalable web applications on AWS. We'll also cover AWS Secrets Manager
and KMS to cover the concepts of secrets management and the management of encryption keys.

This part contains the following chapters:

o Chapter 5, Increasing Application Fault-Tolerance and Efficiency with Elastic Load Balancing
o Chapter 6, Increasing Application Performance Using AWS Auto Scaling

o Chapter 7, Scaling a Relational Database in the Cloud Using Amazon Relational Database
Service (RDS)

o Chapter 8, Managing Secrets and Encryption Keys with AWS Secrets Manager and KMS

5

Increasing Application Fault
Tolerance and Efficiency with
Elastic Load Balancing

In the previous chapter, we set up our first compute instances inside AWS using the Elastic Compute
Cloud (EC2) service. As you have seen, these instances already expose a public IP address that we
could use to serve our page. But what if we need more than one instance to handle the load? This is
where load balancing - the distribution of traffic across a fleet of servers — comes into play.

In this chapter, we'll explore the different AWS offerings when it comes to load balancing, a collection
of resources that are grouped under the term Elastic Load Balancing.

The topics covered in this chapter include the following:

An introduction to elastic load balancing

The different types of load balancers available on AWS
Setting up an application load balancer

Combining the network and application load balancers

Examples of increasing security by serving HTTPS traffic

So, let’s get started!

Technical requirements

To get the most out of this chapter, you should have a basic knowledge of the Amazon EC2 service.

You should have CloudFormation set up according to the instructions in Chapter 1.

104

Increasing Application Fault Tolerance and Efficiency with Elastic Load Balancing

The solution scripts for this chapter can be found at the following link:

https://github.com/PacktPublishing/AWS-for-System-Administrators-
Second-Edition

The CiA video for this chapter can be found at https://packt.link/3DfVe

Understanding Elastic Load Balancing

The core job of any load balancer is to accept a connection from a user, for example, a web connection
started by a browser, and distribute the traffic among a fleet of targets. This core idea can be summarized
in the following figure, where users interact with a fleet of instances via an Application Load
Balancer (ALB).

[V AWS Cloud

Target Group

EC2 Instance

User

Application EC2 Instance

Load Balancer

ECZ Instance

Figure 5.1 — Basic concept of a load balancer

Beyond this core functionality of distributing, or balancing, the traffic, load balancers can also be used
for additional tasks such as terminating the TLS connection. We generally align load balancers with
the layer in which they operate.

https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition
https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition
https://packt.link/3DfVe

Understanding Elastic Load Balancing

Before we get started, let’s get a quick refresher on the Open Systems Interconnection (OSI) model
for networked computer systems with the following figure.

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Figure 5.2 — The seven different layers of the OSI model

The OSI model defines seven different layers on which network protocols can operate. The details of
these are as follows:

Physical layer: Also known as layer 1, it handles the transmission of electric signals. This is
the network card on your computer.

Data link layer: Also called layer 2, it handles how the information from the upper layers is
translated into data chunks to be put onto the physical wire.

Network layer: Also known as layer 3, it can split the data received from the upper layers into
packets and is also used to determine the best route to send a packet to. The most important
protocol on this layer is the Internet Protocol (IP) protocol.

Transport layer: Also called layer 4, it is responsible for turning the information passed from
the upper layers into chunks called segments. On the receiving end of the connection, the
transport layer is responsible for putting the segments back together and - if supported by the
protocol - reassembling the packets in order. This is the layer of the Transmission Control
Protocol (TCP) and the User Datagram Protocol (UDP).

Session layer: Also known as layer 5, it handles lasting connections between clients.

105

106

Increasing Application Fault Tolerance and Efficiency with Elastic Load Balancing

o Presentation layer: Also called layer 6, it takes the data from the upper layer and handles
aspects such as a common understanding of things such as the encoding or compression of data.

o Application layer: Also known as layer 7, it is where applications define protocols to communicate
with each other. The most important example of a layer 7 protocol is the Hypertext Transfer
Protocol (HTTP), which web browsers use to communicate with a web server.

Load balancing happens on different layers of the OSI model. Typically, we’ll do load balancing on either
the application layer (layer 7) or the transport layer (layer 4). AWS offers us two different resources
within the Elastic Load Balancing family to achieve this: Network Load Balancers (NLBs) for layer
4 load balancing and ALBs for layer 7 load balancing.

What load balancer should | use?

As mentioned in the previous section, AWS offers load balancing at different levels of the OSI stack.
Which load-balancing technology to use will depend on the application architecture, and we can also
chain load balancers acting on different levels depending on our needs. In this section, we'll quickly
introduce the four different offerings that AWS - at the time of writing in July 2024 - has available.

The ALB acts as a layer 7 load balancer for HTTP and HTTPS traffic. Due to its understanding of
the HTTP and HTTPS protocols, we can use information specific to this protocol to make our traffic
distribution decisions. Path-based routing lets us make routing decisions based on the HTTP path.
This means that, behind the same load balancer, we can send traffic that is requesting a path such as
/home from the Elastic Load Balancer (ELB) to one set of instances while sending all traffic that is
requesting a path such as /subscriptions to another set of instances. The set of instances that
we are sending traffic to is also called a target group.

Besides routing requests based on the path, we can also use host-based routing, where the ALB will
make traffic routing decisions based on the host header that is set in the request. So, requests for the
host home . example . com can be routed to one target group while requests for subscriptions.
example . com are routed to another target group.

Besides the routing, our ALB will also allow us to terminate TLS connections on it or return
static responses.

When dealing with legacy applications within AWS, you might come across another type of layer
7 load balancer, called the Classic Load Balancer (CLB). CLBs, like ALBs, act on the application
layer and support HTTP protocols. However, the CLB was the predecessor of the ALB and does not
support things such as path-based or host-based routing. In general, you wouldn’t use a CLB in any
newly designed or deployed application.

The third option we have when it comes to load balancing is the NLB, which acts, as the name suggests,
on the network layer (layer 4) of the OSI model. Due to its position on the OSI stack, it does not
support load balancing based on layer 7 information such as the path. What it does support is a static
IP address (per Availability Zone) and handling millions of requests per second. We can also set an

Understanding Elastic Load Balancing

ALB as the target of an NLB. This pattern — which well look into later in this chapter, in the Deploying
an NLB in front of an ALB section — allows us to get a static IP address for our application, which can
be useful in enterprise environments that require the allow-listing of specific IP addresses in firewalls.

The fourth and final load balancer type that is available to you is the Gateway Load Balancer (GWLB).
This load balancer is used to deploy third-party security appliances (such as firewalls from vendors
such as Fortinet or Check Point) into AWS. You’'ll usually not deploy a GWLB without this type of
appliance as its target. The focus of the rest of the chapter will be on the ALB and NLB types.

Setting up our environment

Throughout this chapter, we'll use a lab setup to deploy instances that we can then target using our load
balancers. The code for this is provided in the GitHub repository for this book, and in this section, we'll
clone and set up the lab stack using Terraform. A version of this stack in AWS Cloud Development
Kit (CDK) and CloudFormation is also available in the GitHub repository.

Follow these steps to set up your environment. You should have installed all the required tools as per
the instructions in Chapter I

1. Clone the GitHub repository:
git clone https://github.com/PacktPublishing/AWS-for-

System-Administrators-Second-Edition && cd AWS-for-System-
Administrators-Second-Edition/ch05/setup

2. Initialize the Terraform working directory:

terraform init

3. Create the terraform plan for the resources. This command shows you which resources will
be deployed by Terraform:

terraform plan

4. Apply the plan to actually deploy the resources:

terraform apply

What this Terraform code does is set up a VPC with public and private subnets in three Availability
Zones in eu-central-1 (the Frankfurt Region). It also sets up instances that have an Apache web server
running on them. We have covered all of these concepts in the previous chapters on cloud networking
and the EC2 service. If you are curious, the GitHub repository contains a README with a more
detailed outline of what the lab setup code does.

Now that we have our instances up and running, we can go ahead and create our first ALB.

107

108

Increasing Application Fault Tolerance and Efficiency with Elastic Load Balancing

Vs

-

Note
The infrastructure deployed in this section might incur costs when run. Due to this, be sure
to decommission any infrastructure you deploy after you are done with your experimentation.

For the parts set up by the lab, navigate to the same directory in which you cloned the lab
infrastructure earlier in this section and run the following command to destroy the lab
infrastructure that was set up for you: terraform destroy

Setting up the ALB

In this section, we are going to use Terraform and set up an ALB that can load-balance traffic to the

instances we have created during the setup.

We'll modify the previously created setup . t £ file in order to create our ALB. To do this, follow

these steps:

1. Open up the setup. tf file in a code editor such as Visual Studio Code or Notepad++.
2. Navigate to the end of the file (line 111). You should see this comment:

start setting up your application load balancer here

3. The first resource we are going to create is the ALB itself. To do so, declare a resource of the

"aws_1b" type. In this example, we'll call the resource "main™":

resource "aws_1lb" "main" {

4. Assign a name to the ALB. In this example, this is going to be "main-alb":

name = "main-alb"

5. 'We want our ALB to be reachable from the internet and thus we’ll define that it is not internal

and that the ELB is of type "application":

internal = false
load balancer type = "application"

6. Next, we assign the security group we had previously created. This security group allows for

HTTP traffic to flow into this ALB:

security groups = [aws_security group.allow http.id]

7. We then deploy the ALB into all of our public subnets:

subnets = aws_subnet.public[*].id

Understanding Elastic Load Balancing

10.

11.

12.

13.

14.

Finally, we give the ALB a name tag:
tags = {
Name = "Main ALB"

}

With the ALB created, we can go ahead and create a target group. The target group is where
we'll later attach our instances and it is how we control to what instances a load balancer is
routing traffic:

resource "aws 1b target group" "main" {

We define the name and the port that this target group is listening on:
name = "main-tg"
port = 80
We will then define the protocol. Finally, we reference our VPC that this ALB is deployed into:

"HTTP"
vpc_id = aws_vpc.main.id

}

protocol

We now have a target group but we still need to tell the load balancer what to do with the
traffic. This is done using listeners. Listeners define the action that should be taken by the ALB:

resource "aws 1b listener" "front end" {

We reference our load balancer and define the protocol and port that this listener should act
upon. You can attach multiple listeners to an ALB:

load balancer arn = aws_lb.main.arn
port = "80o"
protocol = "HTTP"

In this case, we'll use the default action — which matches all traffic - to forward to our previously
created target group:

default action {
type = "forward"
target group arn = aws lb target group.main.arn

}

109

110 Increasing Application Fault Tolerance and Efficiency with Elastic Load Balancing

15.

16.

17.

18.

19.

With the listener configured, the only thing missing is the association between the instances
that our Terraform script has already predefined and the target group. We do this by attaching
our instances to the previously created target group. We have a total of three instances deployed
(one per Availability Zone) that we’ll attach to our target group:

resource "aws_ 1lb target group attachment" "public"
count = 3

We pass the ARN of the target group and use the index to assign all three of our instances in
the public subnet:

target group arn aws_1lb target group.main.arn

target id = aws_instance.public[count.index] .id

Finally, we define that our attachment is for port 80:
port = 80

}

In order to be able to verify that our newly deployed ALB is working, we’ll also add a Terraform
output with the DNS name of our ALB:

output "alb dns" {
value = aws_lb.main.dns name

}

You can now go ahead and create the ALB by running Terraform on the modified script:

terraform apply

In the command-line window, you’ll see an output that contains the DNS name for our ALB. Copy
this URL into a browser. Make sure to specify ht tp as the protocol.

In your browser, you should be presented with the plain text Welcome from the instance!.

In this section, we have learned about the different types of load balancers available in AWS and seen
how we can deploy an ALB. So far, our ALB is only able to handle unencrypted HTTP traffic. In the
next section, we will see how we can add support for HTTPS to an ALB.

Handling HTTPS traffic with our ALB

When looking at the load balancer output from the previous section, there are two things you
might notice:

We have an AWS-provided hostname, ending in elb . amazonaws . com. While this might
be fine for testing, we'll usually want to have this run behind our own domain.

We currently use unencrypted HTTP traffic instead of encrypted HTTPS traffic.

Handling HTTPS traffic with our ALB

In this section, we'll remediate both issues.

(A

Note

In order for this section to work, you'll need a domain registered (ideally in Route 53 (R53)).
Please follow the guides in the following documentation to either transfer a domain into your
AWS account or buy a new domain.

Here is the link to register a new domain: https://docs.aws.amazon.com/Route53/
latest/DeveloperGuide/domain-register.html.

- J

Before we can create an HT'TPS listener in our load balancer, we'll need to do a few things:

o We need to associate a custom domain (alb-test.<your domains,in this example)
with our previously deployed ALB. In order to do this, we'll need a DNS A record that aliases
our custom domain name to our ALB.

o We need to request and verify an HTTPS certificate for our custom domain.

Let’s begin the next step of this process.

Setting up a custom domain name for our ALB

We first need our custom domain. Assuming that you have either transferred a domain to your AWS
account or you have bought a new domain within your AWS account, you can go ahead and set up
a custom domain for your ALB:

1. Navigate to the R53 service in the AWS Management Console. R53 is the AWS DNS service
that we’ll use to create DNS records. In the left navigation menu, click on Hosted zones.

2. In the list, select the hosted zone of your domain (squ4rks.link in the following screenshot).

Hosted zones (2) C ‘ Create hosted zone
Automatic mode is the current search behavior optimized for best filter results. To :han‘ge modes go to settings.
Q. Filter records by property or value | 1 &
Hosted zone name bd Type v ‘ Create... ¥ | Record ... ¥ | Descrip... ¥ ‘ Hosted zone ID v
.
@ squdrks.link Public Route 53 5 HostedZo... _

Figure 5.3 — The list of available hosted zones

3. Inthe hosted zone, click the Create record button on the top right.

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/domain-register.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/domain-register.html

112 Increasing Application Fault Tolerance and Efficiency with Elastic Load Balancing

4. Fill in the information as shown in the following screenshot. This will create a DNS A record
that aliases your chosen record name (aka subdomain) to your ELB:

Quick create record Switch to wizard
¥ Record 1

Record name Info Record type Info

alb-test .squdrks.link A - Routes traffic to an IPv4 address and some AWS resources v
Keep blank to create a record for the root domain.
O Alias

Route trafficto Info
| Alias to Application and Classic Load Balancer v |
| Europe (Frankfurt) v |
| Q, dualstack.main-alb-1636501428.eu-central-1.elb.amazonaws.com > 4 |
Alias hosted zone ID: Z215JYRZR1TBD5

Routing policy Info Evaluate target health
| Simple routing v © Yes

} Add another record

Figure 5.4 — Quick creation wizard for the A record connecting our subdomain with our ALB

With your domain configured, you should now be able to use your custom domain name to access
the load balancer (via HTTP). In the next section, we'll create the certificate necessary to access the
load balancer via HTTPS.

Requesting a new TLS certificate for our ALB

Now that we have mapped the domain name, we'll need to create a new HTTPS certificate. To do
this, we'll use AWS Certificate Manager. This service allows us, as the name suggests, to create and
manage certificates.

To create a new certificate for our newly created subdomain, follow these steps:

1. Navigate to the AWS Certificate Manager service in the AWS Management Console.
2. Click on the Request button.
3. When prompted for the certificate type youd like to request, select Request a public certificate.
4. Fill in the information as shown in Figure 5.5.
Under Domain Names, set the fully qualified domain name that you want to create a certificate for.

In this example, this is alb-test.squ4rks.link. This should be the same subdomain you created
in the previous section.

Handling HTTPS traffic with our ALB

The DNS validation - recommended option means that your ownership of the domain will
be verified by pushing some records into the DNS for your domain. If you have the domain in
R53, this will be a one-click operation.

Under Key algorithm, select RSA 2048, which means that this certificate will be a 2,048-bit
RSA key.

AWS Certificate Manager » Certificates » Request certificate > public certificate

49

Request public certificate

Domain names
Provide one or more domain names for your certificate.

Fully qualified domain name Info

‘ alb-test.squdrks.link [

‘ Add another name to this certificate

You can add additional names to this certificate. For example, if you're requesting a certificate for "www.example.com", you might want to
add the name "example.com" so that customers can reach your site by either name.

Validation method info
Select a method for validating domain ownership.

© DNS validation - recommended
Choose this option if you are authorized to modify the DNS configuration for the domains in your certificate request.

O Email validation
Choose this option if you do not have permission or cannot obtain permission to modify the DNS configuration for the domains in your
certificate request.

Key algorithm info
Select an encryption algorithm. Some algorithms may not be supported by all AWS services.

© RsA 2048
RSA is the most widely used key type.

(O ECDSAP 256
Equivalent in cryptographic strength to RSA 3072.

(O ECDSAP 384
Equivalent in cryptographic strength to RSA 7680.

Figure 5.5 — Information for the certificate request

Once you click Create, you’'ll be redirected to an overview page of your certificate request.
Under the Domains section, click Create records in Route 53 to create the required DNS
records that prove your ownership of the domain.

113

Increasing Application Fault Tolerance and Efficiency with Elastic Load Balancing

Once you have created the DNS records, it can take a few minutes until the status of the certificate
changes from Pending validation to Issued.

Once you have an issued certificate, we can get started with creating an HTTPS listener.

Adding an HTTPS listener
We can now add an HTTPS listener to our previously HTTP-only ALB. To do this, follow these steps:

1. Open up the EC2 service in the AWS Management Console and find the main-alb entry.
2. On the overview page, select Add listener.

3. For Listener configuration, select the values shown in the following screenshot:

Listener details: HTTPS:443

A listener checks for connection requests using the protocol and port that you configure. The default action and any additional rules that
you create determine how the Application Load Balancer routes requests to its registered targets.

Listener configuration
The listener will be identified by the protocol and port.

Protocol Port
Used for connections from clients to the load balancer. The port on which the load balancer is listening for connections.
HTTPS v | | 443 <
1-65535

Default actions info
The default action is used if no other rules apply. Choose the default action for traffic on this listener.

Authentication Info
Authentication requires IPv4 connectivity to authentication endpoints. Learn more E
[] Use OpenID or Amazon Cognito

Include authentication using either OpenlD Connect (OIDC) or Amazon Cognito.

Routing actions

© Forward to target groups ‘ ‘ O Redirect to URL ‘ ‘ O Return fixed response

Forward to target group Info
Choose a target group and specify routing weight or Create target group E

Target group Weight Percent

main-tg HTTP - ‘ c ‘ o ‘ 100%

Target type: Instance, IPv4 e

0-999
Add target group

You can add up to 4 more target groups.

Target group stickiness Info

Enables the load balancer to bind a user's session to a specific target group. To use stickiness the client must support cookies. If you want to
bind a user's session to a specific target, turn on the Target Group attribute Stickiness.

[] Turn on target group stickiness

Figure 5.6 — Listener configuration for the HTTPS traffic

Handling HTTPS traffic with our ALB

Let’s learn about each of them in detail:
* Protocol is HT'TPS since we want to serve HTTPS traffic.
* Port is 443, the default port for HTTPS traffic.

* Under Default actions, we want to select Forward to target groups similar to how we did
with the HTTP listener.

* For Target group, to forward traffic, we’ll select main-tg, which was created by the
Terraform script.

* For Weight, we keep a weight of 1, which means that 100% of traffic is routed to this
target group.
Next, we need to configure the security settings.

For Security policy, we can use the recommended ELB security policy, which requires TLS
version 1.2.

For Certificate source, we select From ACM and then select the certificate we created in the
previous step.

Secure listener settings info

Security policy info
Your load balancer uses a Secure Socket Layer {SSL} negotiation configuration called a security policy to manage SSL connections with
clients. Compare security policies [

Security category Policy name

All security policies v ‘ ‘ ELBSecurityPolicy-TLS13-1-2-2021-06 (recommended) v

Default SSL/TLS server certificate

The certificate used if a client connects without SNI pratocol, or if there are no matching certificates. You can source this certificate from
AWS Certificate Manager (ACM), Amazon Identity and Access Management (IAM), or import a certificate. This certificate will automatically
be added to your listener certificate list.

Certificate source

‘ © From ACM ‘ ‘ O From 1AM ‘ ‘ O Import certificate

Certificate (from ACM)
The selected certificate will be applied as the default SSL/TLS server certificate for this load balancer's secure listeners.

2

alb-test.squdrks.link
bc2e3e96-4140-469¢-8b25-036¢...

v

Request new ACM certificate [

Client certificate handling info
Client certificates are used to make authenticated requests to remote servers. Learn more [

[J Mutual authentication (mTLS)
Mutual TLS (Transport Layer Security) authentication offers two-way peer authentication. It adds a layer of security over TLS and allows
your services to verify the client that's making the connection.

Figure 5.7 — Secure listener settings for our HTTPS listener

115

116

Increasing Application Fault Tolerance and Efficiency with Elastic Load Balancing

We now have an HTTPS listener that listens on port 44 3. However, our ALB is currently configured
(via security groups) to only allow traffic on port 80. In order to remediate this, we’ll have to attach
another security group that allows traffic to port 44 3. The Terraform script we ran at the beginning has
already provisioned such a security group for us. To carry out the attaching process, follow these steps:

1. On the overview page of the load balancer, select the Security tab.

2. Under Security groups, select the edit button and then select the security group named
allow_https in addition to the allow_http security group, as shown in the following screenshot:

Security groups

A security group is a set of firewall rules that control the traffic to your load balancer. Select an existing security group, or you can create a
new security group [4.

Security groups

Select up to 5 security groups A ‘ G ‘

Q|

O default
sg-0279a7e2a5dc6c1bb VPC: vpc-ObeaSb29ed06a28fe

allow_https
sg-03a3ala3e5dbc9a8c VPC: vpc-Obea5b29ed06a28fe

g allow_http allow_https

sg-05552537f43f00474 VPC: vpc-Obea5b29ed06a28fe

Cancel Save changes

Figure 5.8 — Adding the allow_https security group to our ALB

With this done, we can now access the HTTPS version of our web page under our custom domain.

Deploying an NLB in front of an ALB

Sometimes, we'll need a static IP address for our application that serves as the entry point that can be
allow-listed, for example, in a firewall.

The following figure shows the architecture diagram of an NLB in front of an ALB that then relays
traffic to a target group of EC2 instances.

Handling HTTPS traffic with our ALB

AWS Cloud
VPC

Target Group

L

EC2 Instance

Network Application EC2 Instance

]
1
Load Balancer Load Balancer 1
1
i f |
i i E
| Ll
1
1
]
1
1
]
1

EC2 Instance

Figure 5.9 — Architecture diagram of an NLB deployed in front of an ALB

In this section, we’ll deploy our NLB in the AWS Management Console since we have so far only
deployed an ELB via Terraform. On the GitHub page, you can find versions of this deployment in
Terraform, AWS CDK, and CloudFormation.

Follow these steps to create an NLB that will live in front of our ALB. We'll first create a target group
that contains our ALB. Once we have the target group, we'll create an NLB that routes traffic to the
previously created target group containing our ALB. Follow these steps:

1. Navigate to the EC2 service in the AWS Management Console and select Load Balancers in
the left-hand navigation pane.

2. In the left-hand navigation, select Target Groups and click Create target group.

3. In the dialog, select the values shown here:

* Choose a target type: Application Load Balancer

Target group name: Use any name you want to identify this target group

117

118 Increasing Application Fault Tolerance and Efficiency with Elastic Load Balancing

* VPC: Select the VPC that your ALB is located in

* Port: Select the port that your ALB is listening on

Basic configuration
Settings in this section can't be changed after the target group is created.

Choose a target type

() Instances

+ Supports load balancing to instances within a specific VPC.
s Facilitates the use of Amazon EC2 Auto Scaling [} to manage and scale your EC2 capacity.

() IP addresses

Suppaorts load balancing to VPC and on-premises resources.
Facilitates routing to multiple IP addresses and network interfaces on the same instance.
Offers flexibility with microservice based architectures, simplifying inter-application communication.

.
.
.
* Supports IPv6 targets, enabling end-to-end IPve communication, and IPv4-to-IPvE NAT.

() Lambda function

« Facilitates routing to a single Lambda function.
= Accessible to Application Load Balancers only.

© Application Load Balancer

+ Offers the flexibility for a Network Load Balancer to accept and route TCP requests within a specific VPC.
+ Facilitates using static IP addresses and PrivateLink with an Application Load Balancer.

Target group name

alb-tg

A maximum of 32 alphanumeric characters including hyphens are allowed, but the name must not begin or end with a hyphen.

Protocol : Port

Choose a protocol for your target group that corresponds to the Load Balancer type that will route traffic to it. Some protocols now include
anomaly detection for the targets and you can set mitigation options once your target group is created. This choice cannot be changed
after creation

TCP v 80 >
1-65535
VPC
Select the VPC with the Application Load Balancer that you want to include in the target group.
main-vpc
vpc-Obea5h29ed06a28fe v
IPv4 VPC CIDR: 10.0.0.0/16

Figure 5.10 — Configuration for the ALB target group

Handling HTTPS traffic with our ALB

4. When asked to register an ALB, choose Register now and select our previously created ALB
from the dropdown.

Register Application Load Balancer
You can specify a single Application Load Balancer as the target. The Application Load Balancer you specify must have a listener on the same port as the target group you're
creating.

‘ © Register now l ‘ O Register later

Application Load Balancer
Choose an Application Load Balancer from the list, or create a new one and refresh the list to select it. You can create an
Application Load Balancer here. [

|main-alb V| l C ‘

‘ & main-alb has a listener on port 80.

Figure 5.11 — Registration of the ALB for our target group

5. With the target group created, navigate back to the Load Balancers item in the left-hand
navigation pane and, on the overview page, click the Create Load Balancer button.

6. Under Load Balancer Type, click the Create button under Network Load Balancer.
7. Give your load balancer a name and select Internet-facing for the scheme.

8. For the address type, you can leave it at IPv4 but notice that the NLB also supports dual-stack
(IPv6 + IPv4).

9. In the Network mapping section, select the VPC we have used throughout this chapter and
deploy the NLB into all of the three Availability Zones.

119

120 Increasing Application Fault Tolerance and Efficiency with Elastic Load Balancing

Network mapping info
The load balancer routes traffic to targets in the selected subnets, and in accordance with your IP address settings.

VPC
Select the virtual private cloud (VPC) for your targets or you can create a new VPC [21. Only VPCs with an internet gateway are enabled for selection. The selected VPC can't be changed after
the load balancer is created. To canfirm the VPC for your targets, view your target groups [

main-vpc
vpe-ObeaSh20edDEa28fe b
IPv4 VPC CIDR: 10.0.0.0/16
Mappings
Select ane or more Availability Zones and ding subnets, Enabling multiple Availability Zones increases the fault tolerance of your applications. The load balancer routes traffic to

targets in the selected Availability Zones enly. Availability Zones that are not supported by the load balancer or the VPC are not available for selection.
Availability Zones
eu-central-1a (euc1-az2)

Subnet

subnet-09b528e6f41f486ed Public Subnet AZ1
IPv4 subnet CIDR: 10.0.0.0/24

IPv4 address
The front-end IPv4 address of the load balancer in the selected Availability Zone.

O Assigned by AWS Use an Elastic IP address

eu-central-1b {euc1-az3)
Subnet

subnet-00a19ee87b4e08054 Public Subnet AZ 2 =
IPv4 subnet CIDR: 10.0.2.0/24.

IPv4 address
The front-end IPv4 address of the load balancer in the selected Availability Zone.

© Assigned by AWS Use an Elastic IP ad|

eu-central-1c (euc1-az1)
Subnet

subnet-00bf10301c15223¢ca Public Subnet AZ3
IPv4 subnet CIDR: 10.0.4.0/24

IPv4 address
The front-end IPv4 address of the load balancer in the selected Availability Zone.

© Assigned by AWS Use an Elastic IP address

Figure 5.12 — Exemplary network mapping

10. For the security groups, deselect the Default security group and add our allow_http security
group to this listener.

11. Finally, for Listeners and routing, select TCP as the protocol and 80 as the port and forward
all traffic to our previously created ALB target group.

Summary

Listeners and routing info

A listener is a process that checks for connection requests using the port and protocol you configure. The rules that you define for a listener determine how the load balancer routes requests
to its registered targets.

¥ Listener TCP:80 Remove

Protocol Part Default action Info

TCP v | : | 80 & Forward to | alb-tg TCP
Target type: Application Load Balancer, IPv4

Create target group [

[c]

1-65535

Listener tags - optional

Consider adding tags to your listener. Tags enable you to categarize your AWS rescurces so you can more easily manage them.

Add listener tag

You can add up to 50 more tags.

Add listener

Figure 5.13 —The listener config for our NLB

Once created, you'll have an NLB deployed that can be used to access the ALB. On the NLB page,
there is a new DNS name that you can use to access your ALB. In this section, we have seen how we
can add a custom domain and a TLS certificate to our load balancer. By doing so, we can now serve
traffic both from a custom domain name and using TLS encryption.

Summary

In this chapter, we have covered how elastic load balancing can be used to distribute traffic among a
group of instances. We explored the different types of load balancers available and discussed when to
use which kind of load balancer. We then deployed ALBs and also an NLB before securing our traffic
by implementing HTTPS.

With load balancers, we can get a public endpoint to which we can send our traffic. So far, we have had
a set number of instances. We are missing one more piece to achieve scalable infrastructure - Auto
Scaling groups. In the next chapter, we'll see how they can be used to automatically scale the compute
instances behind our load balancer.

121

6

Increasing Application
Performance Using AWS Auto
Scaling

In the previous chapters, we saw how the Amazon Elastic Compute Cloud (EC2) service can be
used to dynamically spin up virtual machines in seconds. In Chapter 5, we also saw how Elastic
Load Balancing (ELB) can be used to distribute traffic between a (possibly changing) number of
instances. In this chapter, we'll add the final piece of the puzzle for scalable computing. One of the
benefits of the cloud is the availability of on-demand capacity when we need it. However, it would
be cumbersome for us as administrators and operators to manually check the load of our machines
and add or remove compute capacity based on those manually checked load numbers. This is where
auto-scaling comes into play.

AWS Auto Scaling will scale the number of instances based on demand. This means that if the load
hits a critical point, new instances will be added, and once the load on our system goes down, instances
will be terminated.

Besides making sure that the provided instances match our required capacity as closely as possible,
Auto Scaling can also be used for fault tolerance. By connecting the scaling groups to health checks
(for example, from our load balancer), we can make sure that unhealthy instances are terminated and
replaced with new ones without any human interference.

In this chapter, we'll look into Auto Scaling and its different policies. We'll set up an Auto Scaling
policy - first, in the console and then using Terraform.

124

Increasing Application Performance Using AWS Auto Scaling

The main topics covered in this chapter are as follows:

« Setting up auto scaling using the AWS console and Terraform
« Understanding the different auto scaling policies

o Scaling applications based on demand

Technical requirements

Before following this chapter, please create an AWS account for yourself. You can sign up at aws.
amazon.com. A basic understanding of AWS - for example, what a service is — will be beneficial for
following the chapter.

To get the most out of this chapter, an understanding of EC2 and load balancers in AWS is advisable.
All scripts from this section can be found at the following GitHub link:

https://github.com/PacktPublishing/AWS-for-System-Administrators-
Second-Edition

The CiA video for this chapter can be found at https://packt.link/tSPim

You'll need a VPC and subnets to deploy your instances into. If you still have the subnets and VPCs
created for the load balancers in the previous chapter, you can reuse these. Otherwise, deploy the
Terraform script that you can find at the following GitHub link:

https://github.com/PacktPublishing/AWS-for-System-Administrators-
Second-Edition/blob/main/ch05/setup/setup.tf

When should we use auto scaling?

Not all applications lend themselves to being scaled using auto scaling. Crucially, in order for auto
scaling to work, we need our application to be horizontally scalable.

In general, there are two types of scaling when it comes to computing:

« Vertical scaling: This is the practice of adding more power to a single machine. This could be
done by changing the instance type to a more powerful instance with more CPU and memory.
This is sometimes also referred to as scaling up.

o Horizontal scaling: This is the practice of increasing the compute by adding additional instances.
This is sometimes also referred to as scaling out.

http://aws.amazon.com.
http://aws.amazon.com.
https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition
https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition
https://packt.link/tSPim
https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition/blob/main/ch05/setup/setup.tf
https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition/blob/main/ch05/setup/setup.tf

When should we use auto scaling?

The following figure shows the difference between scaling up and scaling out.

Instance

Instance

Scaling Up/Vertical Scaling

Whether or not we can use horizontal scaling (and thus auto scaling) for our application depends
on the application architecture and on one crucial question: Can a new request be handled by a new

Instance

Instance

Instance

Scaling Out/Horizontal Scaling

Figure 6.1 — Scaling up vs. scaling out

instance independently or are there any in-process dependencies?

A classic example of applications that are difficult to scale horizontally are applications that require

local disk I/O. Take the following simple architecture as an example:

Figure 6.2 — Scenario for an application where horizontal scaling would be difficult

O

Load Balancer

v

Instance A

v

v

Instance B

Filesystem for
Instance A

v

Filesystem for
Instance B

125

126

Increasing Application Performance Using AWS Auto Scaling

In this example, we have two instances, A and B, behind a load balancer. Each instance has an attached
filesystem. Let’s assume our application handles photo uploads and stores them on the local storage
of the instance.

If the user now uploads a picture, the requests might randomly get routed to instance A where the
picture gets stored on the local filesystem of instance A. Next, the user tries to retrieve the photo. This
request is routed to instance B. This instance can’t find the image and returns an error. The application
won't be able to handle the request properly.

(R
Note

The preceding example is even worse because it does not simply fulfill the request to retrieve a
photo. It works only sometimes. Whenever a request to retrieve an image is sent to the instance
that handled the upload, the request returns successfully. Next time, when the request is routed
to the instance that didn’t handle the upload, it will error out.

This kind of behavior is known as intermittent failure or bimodal behavior and is one of
the most undesirable states an application can be in because (from the point of the user) the
application works sometimes.

- J

For this simple example, there would be ways to fix this. One approach would be to introduce a shared
filesystem that synchronizes the files between two or more instances. However, legacy applications, in
particular, can struggle with this kind of scaling, and then scaling up or re-engineering the application
to support horizontal scaling are the only options.

Assuming that our application can be scaled horizontally, we need to define a template of how our
scaled instances should look - this is called a launch template.

Creating a launch template

When we previously created a virtual machine in AWS using EC2, there was a lot of information
that we had to configure manually, such as the Amazon Machine Image (AMI), the instance type,
and the amount of storage, to name a few. How do we do this in our auto scaling group (ASG)? We
need a set of generalized information, such as a blueprint or template, that can be used to create new
instances. This is what launch templates are for.

We'll first create a launch template in the AWS console and then via Terraform together with an ASG.

Creating a launch template

Creating a launch template in the AWS console
To create a launch template, follow these steps:

1. Navigate to the EC2 service in the AWS console and select Instances | Launch Templates.

EC2 <

Dashboard
EC2 Global View [

Events

¥ Instances
Instances

Instance Types

Launch Templates

Spot Requests
Savings Plans
Reserved Instances
Dedicated Hosts

Capacity Reservations

Figure 6.3 — The Launch Templates sub-menu

2. Click the Create launch template button.

3. In the next section, we'll fill out the details of our launch template. First, specify the following:

* Launch template name: This is the name of this launch template.

* Template version description: This is a description of this version of the launch template.
Launch templates can have multiple versions that can be used independently from each
other. This means that one ASG can use version 2 while another is already running version
3. Such a behavior is desirable when rolling out changes to a small subset of instances instead
of all of them.

127

128 Increasing Application Performance Using AWS Auto Scaling

Create launch template
Creating a launch template allows you 1o create 3 saved instance configuration that can be reused, shared and launched at a later tme. Templates can have multiple versions.

Launch template name and description
Launch template name - required

[My Tempiote]

Must be unique to this account Max 128 chars. No spaces or special characters Gike ‘&, ™, "@",

Template version description

[A prod webserver for MyApp]

Max 255 chars

Auto Scaling guidance | info
Select fyou intend 1o wse this template with ECZ Aute Scaling
[T] Provide guidance to help me set up a template that | can use with ECZ Auto Scaling

» Template tags
» Source template

Figure 6.4 — Launch template naming and description section

4. Specify the AMI this launch template should use. In this example, we'll be using the Amazon
Linux AML

¥ Application and OS Images (Amazon Machine Image)

AN AMI TS 3 template that contains the software o { system, server, and required to launch your instance, Search or Browse for AMIS if you
don't see what you are Lloaking for below

[O, Search cur full catalog including 1000s of application and 05 images]
Recents
| Bant incluse macos Ubuntu windows Red Hat || SUSE Linux Dehian Q
in launch
template Browse more AMIs
i = @ Including Abiz fram
*“ ubunku® || B sicosatt || AedHat Se n:»an AW, Marketplace and
the Community

Amazon Machine Image (AMI)

AMmazen Linux 2023 AMI Free tier eligible
ari-00aB29bESedEDdeE (B4-0ir (BS), uef-proferrd) / ani-D56217c208bo0Td4d [G4-ba L), Lefl} ¥
Virnsalization: hwm £NA enabled: true Ract device type: ehis

Description
Amizon Linux 2023 is @ modern, general purpose Linui-based O3 that comes with 5 years of long term support. |t is optimized for AWS and designed to provide a secure, stable and high-
performance execution environment to develop and run your cloud applications.

Armazon Linux 2023 AMI 2023.7.20250331.0 x86_64 HVM kernel-6.1

Architecture Boot mode AMI D Publish Date Username (D

64-Bit (486) W uefi-prefarrad ami-00a929b66ed6e0des 2025-03-23 ec2-user [Verified provider |

Figure 6.5 — Dialog to select the desired AMI and CPU architecture

Creating a launch template

5. Next, we select the instance type that we want to use. In this example, we'll be using the free-

tier eligible t2.micro instance.

¥ Instance type inf | Getadvice

Instance type

Advanced

tEmicro

Family:t2 TvCPU 1 GIE M
Qn-Cemanid Ubuntu Pro base
On-Demand RHEL base pricing

Current generation: true On-Demand Wirdows 3ase pricing: 0.0162 USD per Heur
00134 USD per Huur On-Demand SUSE base p G016 USD per Hour
5USD per Haur On-Demand Linus base pridng: 0.0116 USD per Haur

Free ter eligible (B Al generations
v

Compare instance types

Additional costs apply for AMIS with pre-lnstatled software

Figure 6.6 — Dialog defining the EC2 instance type to be used in our launch template

6. Next, define which SSH keys should be used for the newly created instances.

¥ Key pair (login) i

‘fou can use a key palr to securely connect to your Instance. Ensure that you have access to the selected key palr before you launch the Instance.

Key palr name

[packt-keys

v] C Create new key pair

Figure 6.7 - Key pair used to log in to the instances created by this instance template

129

130 Increasing Application Performance Using AWS Auto Scaling

7. Finally, the Network settings options define the VPCs in which new instances will be added.
Since we'll configure the AZs that instances should be placed into in the ASG, we'll need to
leave the Subnet selection empty (remember that subnets are tied to AZs). For the security
group, select the previously created allow_http group.

¥ Network settings .

Subnet | lals

[Don't include in launch template

When you specify 3 subnet, a network interface is automatically added Lo your template.

Firewall (security groups) | info

l © Select existing security group

A sequrity group |2 2 set of Prewall rules that control the tralfic for yoar Instante. Add rules to sllow specifi traffic to reach your mstance.

e
J | () Create security group
L

Common security groups | Infe

[Select security groups

VPC: vpo-0bafcEfbTe BOITdES

[allw_hn:p 5g-0FABF4FbBT 4534220 x]

SECUNLyY Graups thal you SO0 ¢ FEriowe e will b S00¢d 10 OF rermeved 11Em 81l your Retwolk Nt fates,

- A d 3 Fi i

Network interface 1

Device index | Info

Netwerk interface | info

O Create new subnet [3

& Compare security group rules

Description | Info

'S n N
[0 -] New interface v (
L8 J
Subnet | Infa Security groups | Info Auto-assign public IF | info
\ r ol
Den'tincude in launch template | Select security groups v J & (Don'tinclude in launch templata v
’ » 3
[Show all salected (1)
Primary IP | tnfo Secondary IP | Iafo 1BVE 15 | Info
et ~
[123.123.123.1) L Don't include in launch template v -J (Don'tinclude in launch template v
1Pvd Prefixes | info IPv6 Prefixes | Infc Assign Primary IPVEIP | Info
[Don'tinclude in launch template v

The selected intancs type does not support 1Pv4 prefes

Delete an termination info

The selected instance bype does not support 1P prefixes.

Interface type | Info

[Doan't include in launch template

r
| Don't include in launch template

|

Netwark card index info

The seiected instance type don not wppert multisle network tads

ENA Express | Infe ENA Express UDP | infe Idle connection tracking timeout | 1nfo

Idle conneztion tracking timeout i cnly supparted on Nitro instances.
The selected imtance type does not support ENA Express.

Add network interface)

The selected instance type daes not support ENA Express.

Figure 6.8 — Network settings in our launch template

8. For Storage, we'll leave it at the default 8-GiB gp3 EBS volumes.

¥ Storage {volumes)
EBS Volumes Hide details

¥ valume 1 (AMI Root) ; 8 GIB, EBS, General purpose 550 (gp3), 3000 10PS
AMI Volumes are nat included in the template unless modified

[(D) Free tier aligible customers can get up to 30 GB of EBS General Purpase (S50] or Magnatic storage

Add new volume

Figure 6.9 - Storage configuration for our launch template

Creating a launch template

9. Finally, open up Advanced settings and scroll to the bottom. You should find a field called
User data. Insert the following script in this field:

User data - optional | Info
Upload a file with your user data or enter it in the field.

1 Choose file

#/bin/bash

service httpd start
echo "Welcome from the instance” >> fvar/www/html/index.html

[T User data has already been base64 encoded

Figure 6.10 — User data for our launch template

This is the user data for copying and pasting:

#!/bin/bash

yum -y install httpd git

service httpd start

echo "Welcome from the instance!" >> /var/www/html/index.html

Remember that the user data is a script that is being run upon instance creation. In this example, the
script installs Apache 2 and Git, starts the Apache server, and then overwrites the default HTML with
the message Welcome from the instance!.

With this, we now have a launch template that can be used with ASGs.

131

132

Increasing Application Performance Using AWS Auto Scaling

Creating an ASG in the AWS console

Now that we have our template, we can go ahead and create an ASG. In this chapter, well create an
ASG in the AWS console before using Terraform to create both a launch template and an ASG.

Follow these steps to create a new ASG in the AWS console:

1. Inthe menu of the EC2 service, select Auto Scaling Groups under the Auto Scaling menu item.
2. Click the Create Auto Scaling Group button.
3. First, type a name for your ASG.

Name

Auto Scaling group name
Enter a name to identify the group.

-
asg-test

Must be unigue to this account in the current Region and no more than 255 characters,

Figure 6.11 — Name dialog for the ASG

4. Next, select the previously created launch template. As you can see, you can change the version
of the launch template here.

Launch template it Switch ta launch configuration

Launch template

Chase a launch template that <o

level settings, such a5 the Amazon Machine Image {

e type, koy pakr, and security graups
my-eucl-asg-tpl v | @

Create a launch template [3

Version
Default (1) v | @
Create a launch template version [3

Description Launch template Instance type
Ternpalte for the first ASG Launch template my-eucl-asg-tpl [3 2. micro
1t-029374e636fedbEhs

AMI ID Security groups Request Spot Instances
ami-071878317c44%3e48 - Mo

Key pair name Security group IDs

Gaming 5g-0S552537F43F00474 [2

Additional details
Storage (velumes) Date created

Tue Jul 30 2024 14:39:47 GMT+0200 (Central European
Summer Time)

Figure 6.12 - Selected launch template repeating our selections from its creation

Creating a launch template

(7
Note

You'll sometimes find the term launch configuration. Launch configurations are also templates
to create instances used by ASGs. They are the predecessor of launch templates and are supported
for backward compatibility, but accounts created after June 1, 2023, are not able to create new
launch configurations.

Any new application should use launch templates instead of launch configurations. As of
October 1, 2024, accounts can’t create new launch configurations.
. J

5. Next, we can define the instance type and networking. Since our launch template already
defines our desired instance type, we only need to define the networking selection. Recall that,
in our launch template, we only defined a security group but no subnets since the subnets are
dependent on the AZs.

6. In the Network section, select the main-vpc VPC that was either created in the previous
chapter or by running the Terraform code in the Technical requirements section of this chapter.
Select all three AZs and their corresponding subnets.

Network e

For mest applicatlans, you can use multiple Availabllity Zones and let EC2 Auto Scaling balance your Instances across the zones. The default VPC and default subnets are suitable for getting started
quickly.

VPC
Choose the YPC that defines the virtual network for your Auto S<aling group.

wpc-Obeabh2%ed(6a28fe (main-vpc} - @
10.000/16

Create a VPC [
Availability Zanes and subnets
sefine which Availability Zones and subriets your futo Scaling group can wse in the chosen WEC,

[Select Avpilability Zones and subnets L J @

[eu-central-1a | subnet-09h52826f41f486ed [Public Subnet AZ 1} XJ
TLLOG 24

[eli-central-1b | subnet-00a19e2E7b4e0B054 (Pubilic Subnet A7 2) X]
LD G124

[au-central-1c | subnet-00510301c15225ca (Public Subnet AZ 3) X]
1004024

Create a subnet [7

ity Zane distribution - new
utamatieally balances iNSLances airss Av

i Tares, I laundh Taflires ooour in @ zone, select a strategy

) Balanced best effort
1F launches fail m coe Avaitabllicy Zane, Austa Scaling wil attemat to (unch in anather heatthy
facailability Zone.

() Balanced anly
IF launches fail in one &wailshiliey Zane, Auto Scaling will continue te attempt w0 launch in the
unhealtiny dailedility Zone to aroserve balanced distributian.

Figure 6.13 — Network selection of the VPC and subnets into which we want this ASG to deploy instances

7. Next, we can attach the ASG to our previously created load balancer. This will add the instances
from the ASG to the target group of our load balancer. Any instances that are being scaled
down (and thus terminated) are automatically removed from the target group, and any new
instances added (by scaling up) are automatically added to the list of targets.

133

134

Increasing Application Performance Using AWS Auto Scaling

8. Select Attach to an existing load balancer and then select Choose from your load balancer
target groups. In the dropdown, select the target group. If you are following the example, the
name should be main-tg.

Integrate with other services - optional e

Use a load balancer to distribute netwark traffic across multiple sarvers. Enable service-to-service communications with VP Lattice, Shift resources away from impaired Availability Zones with zonal shift
‘You can also customize health chack replacerments and manitaring.

Load balancing it

Use the options below to attach your Aute Scaling group to an existing load balancer, or to a new lead balancer that you define.

) Mo toad balancer
Traffic ta year Aute Scabng graup will nac be fonsed by a load
ualaner

© Attach to an existing load balancer
Chagse fram yaur existing laa balancors.

() Attach to 2 new lead balancer
GQuickly create 3 hasic load balancer to atach to your Auta

g

Attach to an existing load balancer
select the load balancers that you want to attach to your Auto Scaling group.
r -
£} Choase from your load balancer target groups () Choase from Classic Load Balancers
This optian aliows you to attzch Apprication, Network, or Gateway Load Bafancers.

Existing load balancer target groups
Dty Irstance Targer Gronps (hat Belong ta the sanse YT a8 yelr Aute S2aling group are seallable for selection

| Select target groups A @

[main-tg | HTTE %

Application Loed Baloncer: main-glb

Figure 6.14 — Selection of the load balancer we want our ASG to be part of in the target group

9. Welll ignore the VPC Lattice integration options and move straight to the Health checks
section. (Amazon VPC Lattice is an application networking service that we won’t be covering
in this chapter.) In the Health checks section, put a checkmark next to the Turn on Elastic
Load Balancing health checks option. This will enable unhealthy instances (determined based
on the health checks from the load balancer) to be terminated and replaced.

Health checks

Health checks increase availability by replacing unhealthy instances. 'Whean you use muitiple health checks, zll ara evaluatad, and If at least one fails, instance replacement occurs.
ECZ health checks

@ Always enabiled

Additional health check types - optional | inta
Turn on Elastic Lead Batancing health checks

Elastic Laad Ralarein itizes whethier instandes are available 10 handle regests, Wien it separts an arhsalthy instance, FC2 Auto Sealiag can replace it an 1ts next perindic Chadk

-
{0 ECZ Auto Scaling will start to detect and act on health checks perfarmed by Elastic Load Balancing. To avoid unexpected terminations, first verify the settings of these health checks H
in the Load Balancer consale [

[Turn on Amazan EES health checks

EBS manitoes whether an irstance's roal solurme or atbachud vilume stalls, When it reuets s unimalthy e

2 Al Sealing can replace the stance on 1 mest peridic besti crec

Health check grace period infa
This e perio deliys e first ealth etk until gaur insteces Frish i

300 5 | secanids
L)

. I st prevent an i whir plave into & o

Figure 6.15 — Health checks for ELB

Creating a launch template

10. Next, we can configure our desired minimum and maximum sizes, as well as our scaling policy.

11. Under Group size, define the desired capacity. This is the number of instances that our ASG
should keep running under normal circumstances.

Group size info
Set the initial size of the Auto Scaling group. After creating the group, you can change its size to meet demand, either manually or by using automatic scaling.

Desired capacity type
Choose the unit of measurement for the desired capacity value, vCPUs and Memory[GiB]) are only supported for mixed Instances groups configured with a set of instance attributes.

Desired capacity
Specify your group size

| 2

Figure 6.16 — Desired capacity

12. Then, we can define the scaling. The Min desired capacity field defines how many instances
should be kept up and running at a minimum and Max desired capacity defines the maximum.
By defining a maximum, we make sure that our application scaling doesn’t get out of control,
which could be too costly.

Scaling info

You can resize your Auto Scaling group manually or automatically to meet changes in demand.

Scaling limits
Set limits on how much your desired capacity can be increased or decreased.

Min desired capacity Max desired capacity
(2 IRE g)
Equal or less than desired capacity Equal or greater than desired capacity

Figure 6.17 — Scaling options for this ASG

135

136 Increasing Application Performance Using AWS Auto Scaling

13. Next, we need to define the dynamic scaling part. Select Target tracking scaling policy. Give
the scaling policy a name and then, under Metric type, select Average CPU utilization. The
metric type defines what machine metric should be used to trigger a scale in or scale out of
this ASG. In this example, we are scaling in and out based on the CPU utilization. Our target
is to have our instances run at 60%. If the instances exceed that threshold, new instances are
added. If many instances go below that threshold, some of them are terminated to get the
average utilization of all instances in the ASG back closer to 60%.

Automatic scaling - optional

Choose whether to use a target tracking policy Infa
Vo can set L3 other metric-based scaling policias and scheduled staling after creating your Austa Scaling group.

© Target tracking scaling policy
Chuose & Cous nd barged value and let the scaling policy adjust the desired capacity in
aroaartion o the e,

() Mo scaling policies
Your Aute Scaling proup will remain o4 its initisl size and will not dynamically resize to meet demand,

Sealing policy name

[Target Tracking Policy

Metric type info
Manizareg matric that determines if resaurce usileatian &5 ton law or high. If using £C2 motrics, cansider enahleng detailnd manitadng for better scaling performance.

Average CPU utilization -

Target valug

o)

Instance warmup | Info

0 seconds

[Disable scale in te craate only a scale-out policy

Figure 6.18 — Automatic scaling based on CPU utilization

14. Click Next. In the Add notifications dialog, also click Next. With notifications, we could send
alerts every time a scaling event happens. This can be useful for monitoring and we'll revisit
this when looking into monitoring later in the book.

Add notifications - optional .«

send notifications to 8% topics whenever Amazon EC2 Auta Scaling launches or terminatas ta EC2 instancas in your Aute Scaling group.

Add notification
cancel { Skip to review Next

Figure 6.19 — Add notifications dialog

15. Skip the addition of tags since we don’'t need to add additional meta information for this
example. You can now review all the information put into the ASG before clicking Create to
create the ASG.

Creating a launch template

With the ASG created, it will begin by starting instances that are then added to the target group of the
load balancer. We can verify this by checking the target group in the AWS console.

Targets Mondtaring Health checks Attributes Tags
(D) Anomaly mitigation: Mot applicable ()
Registered targets (2) . 4 cJ
Target groupS Foutn reguests to Indhidual rgistored taegats using tho pratocol and part numbar spaciied, Health chocks are performed on all registered targets accceding to tho target group's health chack settings. Anamaly

detection is automatically applied to HTTRAHTTPS target groups with at least 3 healiny targets,
[@ Fitter trgets | 1 =]

| instance iD ® | Name v | Port v | Zone % | Healthstatus ¥ | Health status details Administr... ¥ | Override.. ¥ | Launch.. & | An

032950%cbd0Scdend B0 eu-central-1af...) initiak

Target registration is |... Sino Mo override |... Agril 15, Z... &

09141 ¢a0676e6e087 80 eu-gentral-c | @ Ininiak

Target registration is i, He perrice | April 13, 2., @

Figure 6.20 — Instances from the ASG have been added to the
registered targets of our Auto Load Balancer (ALB)

As you can see in the preceding screenshot, the three instances previously added are still part of the
target (identified by their name) but there are two newly created instances. These are the instances
coming from the ASG.

Exploring scaling policies

In the previous example, we set a dynamic scaling policy based on CPU utilization. Before moving on
to creating the same with Terraform, let’s briefly touch on the different policies available:

« Dynamic scaling: This tracks a metric such as the CPU utilization of your instances and, when
a certain threshold is met, either scales the number of instances up or down. This is a reactive
scaling policy because the load on the machines needs to increase in order for the scaling
to trigger. For sharp increases in loads and with instances that take a long time to start (for
example, due to a complicated setup process of your software), this type of scaling might not
be able to adequately match the required capacity.

o Predictive scaling: This uses historical data to determine when to scale out (or scale down)
your instances. As the name suggests, this is a predictive scaling policy that tries to anticipate
the required number of instances based on historical data. You can use both predictive and
dynamic scaling together. This means that the predictive scaling policy will try to anticipate the
required load and make scaling decisions based on this prediction while the dynamic scaling
policy will be able to react to real-time deviations from the forecasted load.

o Scheduled actions: These let you define a specific time frame, either once or as a repeating
pattern, in which you want to adjust the number of instances. This can be useful for applications
where the load is highly predictable. Take, for example, an HR system that gets very few visitors
throughout the month except for payday, when all employees access the application to download
their pay slips. This is an example of where you could use scheduled actions to accommodate
the required load.

137

138 Increasing Application Performance Using AWS Auto Scaling

When talking about scaling, we have to also look into the metrics on which we can base our scaling
decisions, as follows:

Average CPU utilization: This is the average usage percentage of your CPU.

Network in/out: This is the percentage of your network interface throughput that is being used.
This can be used for network-intensive applications.

Application Load Balancer request count per target: This tracks how many requests have been
sent to each target. If the count exceeds the desired threshold, new instances are added. This
can be a good metric when dealing with applications where the load is primarily determined
by the number of requests handled by each instance.

Creating ASGs in Terraform

Now that we have seen how ASGs work, let’s automate their creation using Terraform. The sample in
this chapter is self-contained. This means that it will create a new VPC with subnets and an ALB. We'll
very briefly cover the parts where the VPC and the ALB are created since these have been covered in
the previous chapters.

You can find a finished version of this script on GitHub at this link: https://github.com/
PacktPublishing/AWS-for-System-Administrators-Second-Edition/tree/
main/ch06

To get started, follow these steps to create a new ASG using Terraform:

1.
2.

Create a new directory named asg_sample and navigate into it.

Inside the newly created directory, create a file called install.sh and open it in a code
editor such as Visual Studio Code.

In install. sh, type the following code. This will be the user data that is passed to our instances:

#!/bin/bash

yum -y install httpd git

service httpd start

echo "Welcome from the instance!" >> /var/www/html/index.html

Now, in the same directory, create another file called main. t £ and open it in a code editor
such as Visual Studio Code.

In this Terraform file, we'll first define our VPC in the eu-central-1 (Frankfurt) region
and set up subnets in the three AZs, as well as internet gateways. Afterward, a security group
that allows HTTP and SSH traffic is created, which will be used by our load balancer and our
instances later on. Finally, a route table (and association) is created:

provider "aws" {

region = "eu-central-1"

https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition/tree/main/ch06
https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition/tree/main/ch06
https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition/tree/main/ch06

Creating a launch template

VPC
resource "aws_vpc" "asg" {
cidr block = "10.0.0.0/16"
enable_dns_hostnames = true
enable dns support = true
tags = {
Name = "asg-vpc"

Internet Gateway
resource "aws_ internet gateway" "asg" {
vpc_id = aws_vpc.asg.id

tags = {
Name = "asg-igw"

Public Subnets
resource "aws subnet" "public" {

count =3

vpc_id = aws_vpc.asg.id

cidr block = "10.0.${count.index}.0/24"
availability zone = data.aws_availability =zones.

available.names [count.index]
map public ip on launch = true

tags = {
Name = "asg-public-subnet-${count.index + 1}"

}

Route Table
resource "aws route table" "public" {
vpc_id = aws vpc.asg.id

route {
cidr_block "0.0.0.0/0"
gateway id = aws_internet gateway.asg.id

}

139

140 Increasing Application Performance Using AWS Auto Scaling

tags = {

Name = "asg-public-rt"

Route Table Association

resource "aws_route table association" "public" {

}

count
subnet_id
route table id

3
aws_subnet.public [count.index] .id
aws_route table.public.id

Data source for AZs

data "aws_availability zones" "available" {

state =

"available"

Security Group for EC2 instances

resource "aws_security group" "allow http ssh" {

name

description =
vpc_id =

ingress {

description
from port
to port
protocol
cidr blocks

ingress {

description
from port
to port
protocol
cidr _blocks

egress {

from port
to port
protocol

= "asg-allow-http-ssh"

"Allow HTTP and SSH inbound traffic"
aws_vpc.asg.id

cidr blocks =

"HTTP from anywhere"
80

80

n tcp n

["0.0.0.0/0"]

"SSH from anywhere"
22

22

n tcp n

["0.0.0.0/0"]

0

0

n_qn
["0.0.0.0/0"]

Creating a launch template

tags = {
Name = "asg-allow-http-ssh"

}

With the boilerplate done, we can get started writing our launch template. We first define a
data source that returns the latest Amazon Linux 2 AMI:

Data source for latest Amazon Linux 2 AMI
data "aws_ami" "amazon linux 2" {

most_recent = true
owners = ["amazon"]
filter {
name = "name"
values = ["amzn2-ami-hvm-*-x86_ 64-gp2"]

}

Next, we can define our launch template. Notice how we define the instance type, security

groups for the networking interface, and user data in a similar way to how we did it previously
in the AWS console:

Launch Template
resource "aws launch template" "asg" {

name prefix = "asg-template"
image id = data.aws_ami.amazon linux 2.id
instance type = "t2.micro"

network interfaces ({
associate public_ip address = true

security groups
http ssh.id]

}

[aws security group.allow

user data = base64encode(file("install.sh"))

tag specifications {

resource type = "instance"
tags = {
Name = "asg-instance"

141

142 Increasing Application Performance Using AWS Auto Scaling

8. With the launch template done, we can now define our ASG. We start by giving it a name and
defining the VPC and subnets that this ASG should place instances into. We then also define
our health check integration (using the health checks from our load balancer) as well as the
target group. We'll create the load balancer and its corresponding target group later in the script:

Auto Scaling Group
resource "aws_ autoscaling group" "asg" {

name = "asg-group"

vpc_zone identifier = aws subnet.public[*].id
target group arns = [aws_1b target group.asg.arn]
health check type = THLZT

9. Next, we define our desired capacity:

min size = 2
max size = B
desired capacity = 2

10. Next, we define the launch template that we want to use by referencing the launch template
created in the preceding script. We also add a name tag to the ASG:

launch template ({

id = aws_launch template.asg.id
version = "SLatest"
tag {
key = "Name"
value = "ASG-Instance"

propagate at launch = true
}
}

11. The only missing piece now is the scaling policy that tracks the average CPU utilization and
scales to get the average back close to 60:

Target Tracking Scaling Policy

resource "aws_autoscaling policy" "target tracking policy"
name = "asg-target-tracking-policy"
autoscaling group name = aws_autoscaling group.asg.name
policy type = "TargetTrackingScaling"

target tracking configuration {
predefined metric specification {
predefined metric_type = "ASGAverageCPUUtilization"

}

Creating a launch template

target value = 60.0

}
}

12. With our ASG done, we need some more boilerplate code to create the ALB that will target
the instances in our ASG:

Application Load Balancer
resource "aws 1b" "asg" {

name = "asg-alb"
internal = false
load balancer type = "application"
security groups = [aws_security group.allow_http ssh.id]
subnets = aws_subnet.public[*].id
tags = {
Name = "asg-alb"

ALB Listener

resource "aws 1b listener" "asg" {
load balancer arn = aws_lb.asg.arn
port = "8o"
protocol = D2

default action {
type = "forward"
target group arn = aws_lb target group.asg.arn

}

ALB Target Group
resource "aws 1b target group" "asg" {

name = "asg-tg"

port = 80

protocol = "HTTP"

vpc_id = aws_vpc.asg.id

health check ({
path = 0/0
healthy threshold 2
unhealthy threshold = 10

}

143

144

Increasing Application Performance Using AWS Auto Scaling

}

output "alb dns" {
value = aws_ lb.asg.dns name

}

This concludes our Terraform script to create a launch template and an ASG. We can now initiate our
Terraform workspace by running the following command:

terraform init

Next, apply the changes to deploy our newly defined infrastructure:

terraform apply

Once the Terraform script has run through, you should see a new load balancer in the AWS console
called asg-alb. You can use the DNS name that is outputted by the apply command to verify
that everything is working.

You should see a web page saying Welcome from the instance!.

(R
Note

Once you are done experimenting, don’t forget to destroy/decommission all infrastructure you
created by either deploying Terraform scripts or by using the AWS console.

For the Terraform parts, run the following command:

terraform destroy

Summary

In this chapter, we explored how ASGs can be used to dynamically scale our instances based on demand
and how to increase fault tolerance in case one or more instances crash and become unhealthy. We
now have all the compute needs to define a standard three-tier web application in AWS.

In the next chapter, we'll see how we can use Amazon Relational Database Service (RDS) - a managed
database service - to add databases to our applications.

7

Scaling a Relational Database
in the Cloud Using Amazon
Relational Database

Service (RDS)

In previous chapters, we covered EC2 and its adjacent services, such as ELBs for load balancing and
ASGs for automatically scaling our compute infrastructure to meet our demands. If we think about
a classic three-tier application with a frontend, backend, and database layer, we are missing one last
component — the database layer.

This is where Amazon Relational Database Service (RDS) comes into play. RDS allows us to set up
relational databases with a variety of engines in the cloud. If you come from a classical operations
background, you might be wondering why we need this service. After all, we could just set up a database
on an EC2 instance ourselves. This is true, and nothing is stopping you from doing so. However, if
you have set up a production-grade database before, you will know that there are a bunch of tasks
that need to be carried out, such as the following:

o Patching of the operating system of the instance running your database
« Patching and updating of the database engine
o Failover of your database in case an instance goes down

o Backup and recovery procedures

This list is not conclusive, and the idea of managed services in the cloud is that these different tasks
can be delegated to a cloud provider (such as AWS).

146

Scaling a Relational Database in the Cloud Using Amazon Relational Database Service (RDS)

In this chapter, we'll cover the following topics:

o An overview of Amazon RDS
o Setting up a PostgreSQL database in the AWS Management Console

o Automating the setup of an RDS database with Terraform

So, let’s get started!

Technical requirements

To get the most out of this chapter, you should have a basic understanding of relational databases. You
should be familiar with the term relational database. A basic knowledge of PostgreSQL, the relational
database engine we'll be deploying, is beneficial.

To follow the Infrastructure-as-Code (IaC) portion of the chapter, basic familiarity with Terraform
will be beneficial. If you haven't done so already, please follow the steps described in Chapter 1 to set
up a Terraform environment on your development machine.

The GitHub repository with the solution scripts for this chapter can be found at https://github.
com/PacktPublishing/AWS-for-System-Administrators-Second-Edition.

The CiA video for this chapter can be found at https://packt.link/tvWOw

As with previous chapters, a CloudFormation and AWS CDK version of the Terraform script can be
found in the GitHub repo linked previously.

What is Amazon RDS?

Amazon RDS, as a managed service for relational databases, automates administrative tasks such as
the patching of the underlying operating system or the database software itself, which are handled
by the service. In addition, RDS also offers automation for common tasks such as backing up and
restoring your database. So, instead of having to write your own backup scripts that run periodically,
you can use the technology offered by the AWS service.

https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition
https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition
https://packt.link/tvWOw

Creating a PostgreSQL database in the AWS Management Console

When choosing a database, most organizations usually choose a database engine. These can be either
commercial database engines such as Microsoft SQL Server or open source database engines such as
MySQL. At the time of writing (August 2024), RDS supports the following database engines:

» Open source engines:
MySQL
MariaDB
PostgreSQL

« Commercial engines:

Oracle Enterprise Edition/Oracle Standard Edition
Microsoft SQL Server
* IBM Db2

In addition to these, RDS also supports Aurora. Aurora is Amazon’s own database engine that comes
in two flavors. One is compatible with MySQL and the other is compatible with PostgreSQL.

Which database engine you choose will depend on the requirements of the software that you are
building. Throughout this chapter, we'll be using PostgreSQL, but the workflow is similar for the
other database engines.

So, let’s create our first RDS database using the AWS Management Console.

Creating a PostgreSQL database in the AWS Management
Console

In this section, we'll create — and then later delete — our first PostgreSQL database using the launch
wizard in the AWS Management Console. In this walk-through, we’ll create a simple multi-AZ
deployment with a primary and a standby instance. This deployment means that we have our primary
instance in one AZ and a secondary instance in another AZ that we can failover to if the instance in
our primary AZ goes down.

Follow these steps to set up a PostgreSQL instance in RDS:

1. Navigate to the RDS service in the AWS Management Console by either searching for RDS or
navigating to the following link: https://eu-central-1.console.aws.amazon.
com/rds/home?region=eu-central-1.

147

https://eu-central-1.console.aws.amazon.com/rds/home?region=eu-central-1
https://eu-central-1.console.aws.amazon.com/rds/home?region=eu-central-1

148 Scaling a Relational Database in the Cloud Using Amazon Relational Database Service (RDS)

2. On the overview page (see the following screenshot), you'll find an overview of databases you
have previously created and also the orange Create database button that you need to click on
to get to the wizard.

e Aurora and RDS > Dashboard

Aurora and RDS <
P
Dashboard
Databases You are using the following Amazon RDS resources in the Europe (Frankfurt) region {used/quota)
Query Editor DB Instances (0/40) Parameter groups (7)
Performance insights Allocated storage (0 TB/100 TE) Default (7)
Instances and storage include Neptune and DocumentDE. Custom (0,/100)
Anapehon: Increase DB instances limit [3 Option groups (3]
Exports In Amazon 53 DB Clusters (0/40) Default (3)
Automated backups Reserved instancas [0/40) Custom (0,/20)
Reserved instances Snapshats (9) subinet groups (2/50)
Urdotes Manual Supported platforms [VPC
DB Cluster (7/100) Default network vpe-e59bE18d
DB Instance (2,/100)
Subnet groups Automated
DB Cluster (0)

Parameter groups
DB Instance (0}

Recent events {0}
Custom engine versions Evant subscriptions (0/20)

Zero-ETL integrations New

Option groups

Events Create database

Event subscriptions Amazon Relational Database Service (RDS) makes it easy to sat up, ‘You can use a backup from Amazon 53 to restore and create a new
aperate, and scale a relational database in the cloud. Aurora MySOL and MySQL database.

Restore from 53

Recommendations

Certificate update . . .
Mote: your DB instances will launch in the Europe (Frankfurt) region

Figure 7.1 - Overview of database instances in RDS and the Create database button

3. Well first need to choose a creation method. For this walk-through, we’ll be using Standard
create, which lets us freely configure our database.

Choose a database creation method

O standard create | O Easy creane
o 362 il of e coniguirainn optiarm, ireliating oies far availabili, ssvily, biehugs, sd maksisrie | s reennmerdu esi-pracios configuratiam. Some sanfiguratine gtions can be charsped aftor the databae b ereateil

Figure 7.2 — Our chosen creation method for this walk-through

Creating a PostgreSQL database in the AWS Management Console 149

4. Next, we need to select the database engine we want to use, as well as the version of that database
engine. For this walk-through, select PostgreSQL as the engine and a version of your choice
(for example, PostgreSQL 16.3-R2). As you can see by the length of the dropdown, RDS will
support not only one but many different versions for each of the available engines.

Engine options

Engine type (ol

) Aurcea {My=QL Compatinle)) Aurera [FestgreSOL Compatible]
+ +
EX =3
Z MysgL © PostgresgL.
© L
¥
3 Maralb) Oradle
nyf ORACLE
O Mitrasft QL Sarver [sRE
"‘t_;" EijESer\.'Er IEM Dh2

Englne version

[PFesgresl 16.3-23 w |

[Erabile RS Extanced Suppurt. ts

g T St s gt Seng chages ot abeing # s ans rneing rr Sitshase majeeyersan pas the A aed of sans sppan sane b shareerien. Ceadk H e o srandens mipea dans far yner

Figure 7.3 — Selection of the database engine and engine version

RDS offers a variety of best-practice templates. We can select which use case we are currently
looking to implement. A production-grade database configuration will default to high-availability
and performance options at the expense of higher costs. For this tutorial, we'll thus choose the
Dev/Test option. This will keep the costs down while allowing us to configure features such
as a multi-AZ deployment. These configurations are not available in the Free tier template.

Templates

Chosse a senple template 1 el your use case,

e e rabns, bt vy spicaboes, o qain

e dufadis foe high weadabity and fnt, samussen: serfomasce. B inuanc i inberdud for devlopmass s aulds f & prodechos simeranmnt P
with Amazee 25 Inta

") Preduction [@ et J ‘ i
"

Figure 7.4 - Selection of the use case template

150 Scaling a Relational Database in the Cloud Using Amazon Relational Database Service (RDS)

5. Next, we need to select an Availability and durability option. We'll select Multi-AZ DB
instance here.

Avazilability and durability

Depleyment optiars ins
Cratse the doalogment spticn

ank S5LAl [

ot oabicen yods chioese. Liain mind in 06 Anasait ADS seivice

Mulli-AZ O cluster deplug

dyein smare ks

Write/read endpaint ‘Write/read endpaint Wirite/read endacint Aeader endpaints

<21 v 2] 210}

il s

Primary irstance H . Primary instance

2 B e - 2 P

Figure 7.5 — Selecting our Availability and durability option

Before continuing, let’s discuss the three options available to us for availability and durability:

* Single DB instance: This will deploy a single instance in one AZ. This is a great option for
non-critical workloads where the business impact of the database being unreachable is low.
This is commonly the case for development or testing environments that don’t have any
production workloads running on them.

* Multi-AZ DB instance: This will deploy a primary and secondary database spread across
two different AZs. The data is automatically synchronized between these two instances. In a
scenario where the primary instance goes down, this means that the secondary instance can
take over and we thus minimize the downtime. This comes at a greater cost since we now
have two instances instead of just one that we are paying for. We do not get any performance
benefits since the secondary instance is a passive standby.

* Multi-AZ DB Cluster: These, similar to a multi-AZ DB instance, deploy instances across
AZs and replicate the data to them. However, these secondary instances also become read
replicas. This means that we have a primary endpoint that we can use to read and write while
we have endpoints for the read replicas that we can only read from. This kind of setup is
useful for use cases where we have read-heavy workloads (reporting and analytics workloads,
for example) since we can take some of the read load off of the primary instance and shift
it to the secondary instances. This performance and availability gain again come at a price
since we are paying for multiple instances.

6. Next, we can configure the settings of our database, such as the name of our database (my-first-
database, in this example) as well as the username and password.

Under Credentials management, we'll choose Self managed for the creation of the password.
We'll see how to integrate RDS with AWS Secrets Manager in Chapter 8.

Creating a PostgreSQL database in the AWS Management Console

You can then set a password for your database.

Settings

D imstance |dentifiar
Ty a ram fur-pour

| my-first-databise

¥ Credentials Settings

Mater usarname
Typn 4 lagen (0 far the sarkar ser af your

| posigres

Cradantiats managemant
Vi can usa AW Satzats Manager oe mana

| [© set mansges

Master passward iedn

Figure 7.6 — Username and password settings for our database

7. With the username and password configuration done, we can move on to the instance
configuration. Here, we select the type of instance we want RDS to use in the background. The
more powerful our instance is, the more expensive our RDS deployment becomes. The type of
instance depends on the performance requirements for your database.

For this example, we'll choose the db.még.large instance type.

Instance configuration
The DB instance configuration options below are limited to those supported by the engine that you selected above.,

DB instance class nfe

¥ Hide filters

(B Include previous generation classes
© standard classes (includes m classes)

() Memary optimized elasses (includes r and x classes)
(") Burstable classes (Includes t classes)

db.még.large -
ZvCPUs B GIBRAM Notwork: Up to 4,750 Mbps

Figure 7.7 - The instance configuration for our RDS database

Notice the g in the instance name. This identifies instances that use the Graviton processor
family from AWS. These ARM-based CPUs are generally more cost-efficient than using Intel
or AMD-based CPUs. Since RDS is a managed service, it ensures that the database engine
software runs smoothly on ARM-based systems, which is an easy way to save money.

151

152 Scaling a Relational Database in the Cloud Using Amazon Relational Database Service (RDS)

8. With our compute selected, we can now select our preferred storage type and the size of our
storage volume. In this example, we are going to select the General Purpose SSD (gp3) storage
type and allocate the minimum required amount of storage of 20 GiB.

Storage

Storage type info
Praviganed JOPS 55D {0z}

Allocated storage info
(20 | e

Minimum: 20 GIB. Maximi

Provisioned 10PS 1ifa
10PS

Baseling IDPS of 3,000 10PS & ncludi for Alleeated staragn s than 400 GIB,

storage throughput infs
MiBps

Baseline storoge throughput of 125 Milps i induded for aliuceted storage less than 40D Gib.

[() To provisien additional IDPS and throughput, increase the allocated storage to 400 GIB or greater.]

» Additional storage c

Figure 7.8 — Storage settings for our database instance

9. Next, we have the connectivity. RDS will deploy our instance into a VPC. The details of the
configuration are as follows:

= Compute resource: Select Don’t connect to an EC2 compute resource.

= Network type: Select IPv4 since we don’t need dual-stack (IPv6 and IPv4 connectivity) for
this example.

* Virtual private cloud (VPC): Select a VPC that you want to deploy the database into. You
can select main-vpc that was created in the previous chapters.

* DB subnet group: Either select the subnet that you want this database to be deployed into
or select Create new DB Subnet Group, which will set up a new subnet for you.

* Public access: Select No here. This means that the database instances will be deployed into a
private subnet that can’t be reached from the public internet. This is generally the preferred
way since you don’t want public access to your database instance.

Creating a PostgreSQL database in the AWS Management Console

Connectivity = (&3]
Compute resaurce
ChATAREHEE b 42 % SSEEHRA T FETE TREEAE 450 Ml haahaa Secliog s rareec et ST e atEaly ehaeigs ety eI s tha ik s an ronnet £ fhs datasanr
D Doy conrect boan EC2 eompute mesource 3 Canmect 1 an FCE compute e
Duat4ek e 2 cunelin b a ke revaese o I Satabse: e v minsdly 565 U & sorereation fo & G Cesture Set o d s an B2 et vestanes e s datebase.
Nutwark type Infn
T s s 2Tk s, e e hatyou s ciate an P8 CORIoch et 3 bt i) the YPL yia specity
Q P 3 Dual stack made
N S e S ety e R Yo Fpvate Ean exaetizats S 1P, P, at bl
Wirtunl private loud [UPL} ik
Chosse the YL The Y deflins Uhe i st nstnsebing nsisringnt fue £ B8 intaree,
marrvpe [vpc-Ubeatoztedibazufe) -
2 tuznets, 5 s
il Vs e & curs s 95 5ol o e el
5
(T} After 2 catabass m crested, you can's change s VPC
DE subnct group infa
Chaste the 8 subroct grunsp The O 5ol urovap dellocs whidh Susnets o 1P rainges Lo D retases €20 s Byt VPE Ul s st
default-vpe-Ubessbadeddiathe g
3 tuzurts, 3 Avsttabty Zun
Public aczim 120
- 1P bt o Fhe datehase AFssnn BCE EStInces 30 6ohor pesnietes Sursds oF the YR con casnEct b yacr datihsse, ResTuesas insidn 1ha YPE can Alss ansect 1 The d3kbes, Chatae tae or mare UPE st s i aparty whEh reacarees con

e cabait

O He

RIS daesiiy asign 3 pabic 1P oddvess i s datahase, iy Amazon EC3 msnanoss ard arher resdirces ek the S con carstect o yaur dicasose, Chaose sne o mine VP socurity granss £har spacly which Ieseiress can cocneet 1o the dnzbase

Figure 7.9 — Connectivity settings for our database instance

10. Within the VPC, we'll also need to create a security group that will be attached to our database
instances. Select Create new to have the wizard create a new security group that, by default,
allows for communication on the database port (5432 by default for Postgres).

VPC security groug Mirewally nfo

che e or e WP security groups In allow aceess to yoor database. Make sure that the serurity group sules alle e sppeopeiste intuming traific

() Choose existing Q) Create now
Cleaose esdsting VP Secunty groups Create new VAL socurity group

New VPC security group name

db-subnetgroup

RDS Prony
2% Brasy s o Tully managed, Fighly sailsble datsnase prosy trut improves spplication scelability, msilisncy, snd security
] createan RDS Prooy infis

A0S autamatically creates an LAM role and o Secrels Manager secret for the prasy. ADS Frooy has addtional costs. For more informatian, see Amazen R3S Frowy pricing [3.

Figure 7.10 - Settings for our security group that will be attached to the database instances

11. For Database authentication, select Password authentication. We could also manage access to
our database via IAM roles and permissions or using Kerberos. For this walk-through, we’ll use
Password authentication since this is still the most common way to authenticate with a database.

Database authentication

Database authentication options Info
© Password authentication
Authenticates using database passwords,

() Password and |AM database authentication
Authenticates using the database password and user credentials through AWS 1AM users and roles.

() Password and Kerberos authentication
Choose a directory in which you want to allow authorized users to authenticate with this DB instance using Kerberos Authentication,

Figure 7.11 - Authentication settings for our database instance

153

154 Scaling a Relational Database in the Cloud Using Amazon Relational Database Service (RDS)

12. For Monitoring, we can enable Performance Insights with the 7 days retention period.

At the time of writing, these are part of the free tier. Performance Insights analyzes the performance
metrics of your database and transforms them into an easy-to-understand load number that
is presented in the AWS Management Console.

Monitoring .
Cheoss manitaring teols for this database. Datanasa Insights provides 3 combined winw of Farfarmance Insights sed Enhanced Monitoring for yeur flees of databases. Database Insights pricing b separmte fram RDS monthiy estimans. See

Amazon Clessshwateh pricing [

| O Database insighes - Agvanced | | © Database insighss - Standsed

¢ harrreanics hiskary, with the sptisn 15 pay fi the setesine of op 52 24 manthe of gerfaman

Performance Insights
Enabla Parteemancs Insights

Retention period

7 days ree tier) v |

AW KMS Ky 1ote

Idefauit) aws frds v |

Agcount

KMS key 1D

| £ o can't ehange the KMS ey after you create your database

[»_Additional manitoring settings!

O G

Figure 7.12 - Monitoring the settings for our RDS instance

13. Next, open up the Additional configuration tab. Most of the settings here are sensible defaults
but we want to quickly walk through them to get an understanding of what RDS is doing in
the background:

* Initial database name lets you specify a default database that RDS will create automatically.

* DB parameter group and Option group are the configuration and option parameters for
our database engine.

* Under Backup, we can enable (or disable) automated backups and we can also define the
time window during which we want the backup to take place, as well as the retention period
for our backups.

* An optional setting (turned off in this example) is the replication to another Region. This
means that our data gets replicated to another Region (say from eu-central-1, the Frankfurt
Region, to us-east-1, the North Virgina Region). In the highly unlikely case of a full Region
failure of the first region (eu-central-1, in this case), this would mean that we could restore
our database from that backup.

Creating a PostgreSQL database in the AWS Management Console

Backup

Enable automated backups
Creates a point-in-time snapshot of your database

Backup retention period Info
The number of days {1-35) for which automatic backups are kept.

[? v] days

Backup window Info
The daily time range (in UTC) during which RDS takes automated backups.

© choose a window
(O No preference

Start time Duration

[047]:[007]UTC E]hours

Copy tags to snapshots

Figure 7.13 — Additional settings containing database options and backup

Also, under Additional configuration, we can find settings relating to encryption and maintenance.
We will talk more about encryption and AWS Key Management Service (KMS) in Chapter 8.

Under Maintenance, we can define that RDS is allowed to automatically apply minor version
upgrades to our instance and we can - similar to the backup window - define a timeframe
during which these updates are allowed to take place.

Encryption
Enable encryption

Chaose to encrypt the given instance. Master key 1Ds and aliases appear in the list after they have been created using the AWS Key Management Service console. Info

AWS KMS key info

((default) aws/rds ']

Account

KMS key ID

Maintenance
Auto miner version upgrade Info

Enable aute minor version upgrade
Enabiling auto minor version upgrade will automatically upgrade to new minor versions as they are released. The automatic upgrades occur during the maintenance window for the
database.

Malntenance window Info

Seleet the pesied you want pending madifications or maintenance applied to the database by Amazen RDS.

() Choose a window
© o preference

Deletion protection

[_] Enable deletion protection

Protects the database from being deleted accidentally. While this option is enabled, you can't delete the database.

Figure 7.14 - Maintenance and encryption settings for our RDS instance

155

156 Scaling a Relational Database in the Cloud Using Amazon Relational Database Service (RDS)

14. The last element in the wizard is an estimate of the monthly cost incurred by running this
database. The cost is split across compute — the cost of running our database instances — and
storage — the cost of our storage volumes. Depending on your previous selections, your numbers
may differ here.

You can use this estimate to play around with the cost impact of, for example, adding more
storage or selecting a different deployment type (Multi-AZ Cluster instead of Multi-AZ
instance, for example).

Estimated monthly costs

DE Instance 2TEET USD
Storage 5.48 UsD
Total 282,15 USD

This billing estimate is based on on-demand usage as described In Amazon RDS Pricing [3. Estimare does not include costs for backup storage, 105 (if applicable), or data transfer,

Estimate your monthly costs for the DB Instance using the AWS Simple Menthly Caleulater [,

Figure 7.15 — Estimated monthly cost of our database configuration

15. With the configuration done, click on the Create database button

After a few minutes, you should see your newly created database on the overview page in RDS with
an Available status.

= e A e G

Databases [1) D oy necuroe (9- wosity) { Actions Create database | ¥
[Ty Rt oy durahases ! &
|| DS Identter & | smaws ¥ Hale 7 | egine w | megion. | sl T | Recommendations. = | tew v | testacnity v | wal

[-] my-first-catanmse @ ceatirg InsTance PostaRSL au-canial., b, mg g - Ao

Figure 7.16 — RDS overview page showing the newly created database

In this section, we have seen how to create a Postgres database in RDS and explored some of the features
of RDS. Next, let’s learn how to delete this database. Especially when exploring the functionality of
RDS, it is important to not have unused database instances sitting in our account since, as you have
seen in the previous estimate when creating the database, they incur a not insignificant cost. Thus,
going through the list of databases from time to time and verifying whether they are still needed is
also a good way to optimize costs as an organization.

Deleting a database in RDS

Deleting a database in RDS

Since the database that we have just created is incurring some costs, we'll now go ahead and delete
the database after taking a snapshot. A snapshot is a copy of our data at the time the snapshot was
taken. We could use the snapshot to recreate the database if we needed to.

In order to delete the database after creating a snapshot, follow these steps:

1. Inthe database overview, select your previously created database.
2. Under Actions in the dropdown, select Delete.
Databases (1) O crowprsouress () [oty | (aetions &) ((Erate Gatabase ||
[a F:l(.'r.’:.'as.’n“.mﬂ Quidk Actions 1 &
: Cormeert to Multl-a deployment
DE Identifier a | seates w | jale v | engine T | meglen.. w | Siee w | peomines) irentactivity ¥ | Mai
o iy First-database €3 Moady... Instance PastgesGL SUGENTEL b Large i | fioy
: T —
Create read replica
Crman hlue/gresn g;pw,nxw
Tien snapshor
Migrate snapskot
Creste HOS Frowy
Creame ElastiCacne cluster
Figure 7.17 — Delete action for our newly created database
3. You'll be presented with a popup that lets you select the option to create a final snapshot. The

Create final snapshot checkbox should be selected by default. If it isn't, select it and provide a
name for your final snapshot. You can also select the option to retain the automated backups
for seven days after deletion. This will incur storage costs but would give you the option to
restore your database to not only the final snapshot but also any point where a backup was taken.

157

158 Scaling a Relational Database in the Cloud Using Amazon Relational Database Service (RDS)

Once you have checked both boxes, type delete me into the text field at the bottom to
confirm your intention to delete the database.

Delete my-first-database instance X

Permanently delete my-first-database DB instance. You can't undo this action.

&\ Proceeding with this action will delete the instance with all its content and
can affect related resources. Learn more [4

Create final snapshot
Determines whether a final DB Snapshot is created before the DB instance is deleted.

Final snapshot name
The identifier of the new DB snapshot that is created.

[my-first-database-snapshot |:|]

Retain automated backups
Determines whether retaining automated backups for 7 days after deletion

@ You will be billed for retained backup storage at the rate described as
‘Additional backup storage’ found in Backup Storage. [2

To avoid accidental deletion provide additional written consent.

To confirm deletion, type delete me into the field.

[delete m¢|]

Cancel Delete

Figure 7.18 — Dialog to confirm the creation of a final snapshot of our
RDS database, as well as the retention of our backups

After you have confirmed the deletion, the database will become unreachable and will switch its state
to Deleting.

Deploying an RDS instance with Terraform

While the database is deleting, you can navigate to Snapshots in the left-hand navigation menu. Here,
you’'ll see a list of your snapshots and also the snapshot of the database that is being deleted.

Snapshots
Manual Systei Shared with me Public Backup service Exports in Amazon 53
Manual snapshets (3} () awions v | ({ vahe smapshot |
(Ew %) 1w iy B
O | snapshot nzme 4 Engineversion ¥ | DEinstance or cluster T | Snapshot cretion time @ | DBimstance createc time v | Stams ¥ | Frogress ® | wAC =
[1 mwiistdatasmsesncpshot 155 my-first-dataase Suagust 18, 2024, 2055 UTCH0Z00, dwgust 14, 2324, 205 UTCHOE0N @ dwaishle Completed vpe-Ubeatib2dedlcazine

Figure 7.19 — Snapshots overview and the snapshot from our newly deleted database

Selecting a snapshot and choosing the Restore Snapshot action from the Actions dropdown would
bring you to the creation wizard that we have just walked through. The only difference is that the
instance wouldn’t start with no data in it but rather with the data from the snapshot.

In this section, we have seen how we can delete a previously created database instance in the AWS
Management Console. Before deleting, we also saw how we can leverage the Snapshots tool to make
a backup of our data before deleting the database.

In the next section, we'll set up another RDS instance - but this time as a multi-AZ cluster with a read
replica and using Terraform instead of the wizard in the AWS Management Console.

Deploying an RDS instance with Terraform

In this section, we'll create a Postgres instance in RDS using IaC in Terraform. The following walk-
through contains some boilerplate code at the beginning to set up a new VPC and public and private
subnets before setting up a new multi-AZ deployment with two read replicas.

Follow these steps to create an RDS instance for PostgreSQL in Terraform:

1. Create a file called database. t £ and open it in a code editor such as Visual Studio Code
or Notepad++.

2. Well first need some boilerplate code to create a new VPC, as well as to create public and private
subnets. For more details on the concepts in this code, please refer to the Creating a VPC using
the AWS Management Console section of Chapter 3, where it was explained in detail:

provider "aws" {
region = "eu-central-1"

data "aws_availability zones" "available" {
state = "available"

}

resource "aws vpc" "main" {

159

160 Scaling a Relational Database in the Cloud Using Amazon Relational Database Service (RDS)

cidr block = "10.0.0.0/16"
enable dns hostnames = true
enable dns support = true

}

resource "aws_ internet gateway" "main" {
vpc_id = aws_vpc.main.id

}

resource "aws subnet" "public" {

count =3
vpc_id = aws_vpc.main.id

cidr block = "10.0.$%{count.index}.0/24"
availability zone = data.aws_availability zones.

available.names [count . index]
map public ip on launch = true

}

resource "aws_subnet" '"private" {

count =3
vpc_id = aws_vpc.main.id
cidr block = "10.0.%{count.index + 10}.0/24"

availability zone = data.aws_availability zones.available.
names [count . index]

}
resource "aws_route table" "public" {
vpc_id = aws vpc.main.id
route {
cidr block "0.0.0.0/0"
gateway id = aws_internet gateway.main.id

}
}

resource "aws route table association" "public" {
count =3
subnet id = aws_subnet.public[count.index] .id
route table id = aws_route table.public.id

}

3. With the boilerplate code done, we can next create a subnet group for our database instances to be
placed into. We'll deploy our database instances into the previously created public subnets here:

resource "aws_db subnet group" "postgres subnet group" {
name = '"postgres-subnet-group"
subnet ids = aws_ subnet.private[*].id

}

4. Next, we define a security group in our previously created VPC and allow ingress traffic to port
5432 (the default port for Postgres):

Deploying an RDS instance with Terraform

resource "aws_se

name =

vpc_id =

ingress {
from port
to port
protocol
cidr blocks

}

egress {
from port
to port
protocol
cidr blocks

}

curity group" "postgres" {
"postgres-sg"
aws_vpc.main.id

= 5432

= 5432

= "tcp"

= [aws_vpc.main.cidr block]

= n_qn
= ["0.0.0.0/0"]

Now we can create our primary database instance using the aws_db_instance resource.
We first define information such as the name, the engine, and the engine version we want to
use, as well as the instance type and storage configuration, similar to how we selected this in
the wizard in the AWS Management Console:

resource "aws db instance" "postgres primary" {

identifier
engine
engine_version
instance class
allocated stor
storage_ type

= "postgres-primary"
= "postgres"
= "l6.3"
= "db.m6g.large"
age = 20
= "gp3"

Next, we define our instance to be multi-AZ and configure a name for the database, a username,

and a password:

multi az
db name

username
password

= true

= n mydb n

= "postgres"

= "" # Insert your chosen password here

Then, we can associate this instance with the previously created database subnet group, as well

as the security group we previously created:

db subnet group name = aws_db subnet group.postgres subnet

group.name

vpc_security group ids = [aws_security group.postgres.id]

161

162 Scaling a Relational Database in the Cloud Using Amazon Relational Database Service (RDS)

8. We can then define our backup and maintenance settings. Here, we instruct RDS to keep our
backups for seven days and select a backup from 3 to 4 a.m. and a maintenance window on

Mondays from 4 to 4.30 a.m:
backup retention period = 7
backup_window = "03:00-04:00"
maintenance window = "mon:04:00-mon:04:30"

9. Since this is our primary database, we configure it to (upon deletion) take a final snapshot
called tf-final-snapshot:

skip final snapshot = false
final snapshot_identifier = "tf-final-snapshot"

}

10. With our main instance done, we can configure our two read replicas (using the count
parameter) and associate these to replicate the primary database. We define the same instance
class and security group for our read replicas that we used for the primary instance.

Since our read replicas only replicate the data from our primary, we skip the creation of a final
snapshot on these instances:

resource "aws_db_instance" "postgres replica" {

count = 2

identifier = "postgres-replica-${count.index + 1}"

instance class = "db.m6g.large"

replicate source db = aws_db_ instance.postgres primary.
identifier

vpc_security group ids = [aws_ security group.postgres.id]

backup retention period = 0
skip_final_snapshot = true

}

11. Finally, we define two outputs, one for the primary endpoint (for read/write operations) and
one for the replica endpoints (for read-only operations):

output "primary endpoint" {
value = aws_db instance.postgres primary.endpoint

}
output "replica endpoints" {
value = aws_db_ instance.postgres replica[*].endpoint

}

12. To deploy the database, we need to first initiate Terraform:

terraform init

Summary

13. With Terraform ready, we can deploy the database by running the apply command. Note
that this apply command could take several minutes to finish:

terraform apply

During the deployment, you can see the database being deployed in the AWS Management Console.
Notice in the following screenshot how the two replicas are associated with our primary database instance.

Databases (2) @ Group resources @ vodity | (actions ¥) (' Create datahase || ¥
Q. Filter by databases : 1 @
DB identifier a | Status k4 Role - Engine v | Region .. ¥ Size k4 Recommendations A C
l [+ postgres-primary @ Modify... Primary PostgreSQL eu-gentral... db.még.large I
postgres-replica-2 @ Config... Replica PostgresQL eu-central.,, db.mbg large

Figure 7.20 - The RDS database overview page during the creation of
our mutli-AZ cluster with two read replicas from Terraform

Since the database will incur costs, it is recommended that you go ahead and delete the database using
Terraform. This operation will also create a snapshot that you can verify in the Snapshots menu in
the AWS Management Console:

terraform destroy

Summary

In this chapter, we have seen how Amazon RDS can be used to create managed relational databases.
We created a PostgreSQL database — first in the console and then using Terraform.

In the next chapter, we'll learn about two services that have already been mentioned in this chapter:
AWS KMS for the management of encryption keys and Secrets Manager to manage secrets. We'll also
revisit RDS and configure it to use a customer-managed encryption key from KMS, as well as storing
the database password in Secrets Manager.

163

164

Scaling a Relational Database in the Cloud Using Amazon Relational Database Service (RDS)

Join the CloudPro Newsletter with 44000+ Subscribers

Want to know what’s happening in cloud computing, DevOps, IT administration, networking, and
more? Scan the QR code to subscribe to CloudPro, our weekly newsletter for 44,000+ tech professionals

who want to stay informed and ahead of the curve.
]
]

https://packt.link/cloudpro

https://packt.link/cloudpro

8

Managing Secrets and
Encryption Keys with AWS
Secrets Manager and KMS

In the previous chapters, we saw how to create scalable compute infrastructure using EC2 and managed
databases with RDS. However, for an EC2 instance to be able to connect to a database, we'll usually
need a username/password combination. This is also often the case when we want to connect to
third-party services that are available via an API. In short, we need a way to create and retrieve these
secrets without the need to manually add them to each of our systems.

Setting and retrieving a secret securely is already a very helpful feature, but what about password
rotations? When dealing with credentials such as the connection details for a database instance, it
is advisable to change or rotate these credentials on a regular basis. Let’s say we want to rotate the
password of all our database systems every seven days. This would mean that every seven days, we
would have to remember to manually set a new password for each of our databases and then also
remember to update all applications that need connectivity to that database system.

Handling these two topics, the storage and retrieval of secrets as well as the rotation of secrets, can be
done using AWS Secrets Manager, which we are going to explore in this chapter.

The main topics covered in this chapter are as follows:

 Introduction to AWS Secrets Manager

o Creating a secret in Secrets Manager using both Terraform and the CDK

o Accessing a secret from an AWS Lambda function using Boto3

+ Integrating Secrets Manager with Amazon RDS to automatically rotate passwords
+ Introduction to AWS KMS

o Changing an existing S3 bucket to a customer-managed key

166

Managing Secrets and Encryption Keys with AWS Secrets Manager and KMS

Technical requirements

Before moving further in this chapter, please create an AWS account for yourself. You can sign up
at aws . amazon. com. A basic understanding of AWS, such as what a service is, will be beneficial.

A basic understanding of Python will help with the programming-based sections of this chapter.
A basic understanding of infrastructure-as-code (IaC) tools such as Terraform and CDK is beneficial.
All scripts from this section can be found at the following GitHub link:

https://github.com/PacktPublishing/AWS-for-System-Administrators-
Second-Edition

The CiA video for this chapter can be found at https://packt.link/93jE]3

Storing secrets with AWS Secrets Manager

In this section, we’ll look at AWS Secrets Manager and how we can use it to securely store our secrets
in the AWS cloud. We'll see how we can programmatically create these secrets via IaC tools, and we’ll
also see, based on the example of Amazon RDS, how Secrets Manager integrates with other AWS
services to store and rotate secrets.

With our secrets stored, we'll then see how to access these secrets using Boto3 and Python. So, let’s
get started!

What is AWS Secrets Manager?

When dealing with secrets, we need a centralized way of storing them. In AWS, this job is done by
AWS Secrets Manager. Secrets are key/value pairs and the secret itself is represented as a JSON object.
In theory, we can store any key-value pair we want in a Secrets Manager secret (if the value is JSON-
serializable and does not contain an array - otherwise, you will get an error) but in practice, we usually
just store credentials such as the username and password. Application configuration should reside in
environment variables or tools such as AWS Systems Manager Parameter Store. We'll see an example
of storing application configuration in Parameter Store in Chapter 14.

Secrets have two major sources:

o Populated by a service: This includes Amazon RDS or an Amazon Redshift data warehouse,
among others

o Provided by the user: This is used when we want to store secrets such as API keys, OAuth
tokens, or username/password combinations for systems that are either self-developed or are
outside of AWS

http://aws.amazon.com
https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition
https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition
https://packt.link/9jEj3

Storing secrets with AWS Secrets Manager

Secrets also have a lifecycle, especially for passwords, as we want to rotate them regularly. Secrets
Manager handles this for us and lets us define a rotation schedule as well as allow the manual rotation
of a compromised secret.

With the basic ideas behind secrets and AWS Secrets Manager covered, let’s go ahead and create a
new secret using IaC in both the CDK and Terraform.

Creating secrets in the CDK

We can use [aC with the CDK to create a new secret. We'll then also use the CDK to write a Python-
based Lambda function that retrieves the provided secret.

Note that you need a CDK setup as shown in Chapter 1. The solution script can be found in the
GitHub repository.

To get started with the secret creation in CDK, follow these steps:

1. Using your command line, create a new directory called secrets_sample and change your
working directory to the newly created directory using the cd command:

mkdir secrets sample
cd secrets sample

2. In the newly created directory, we need to create a CDK project. We'll be using Python as
our programming language of choice here. To create a new project that uses Python, type the
following command:

cdk init app --language=python

3. The CDK automatically creates a new virtual environment for us that we need to activate:

source .venv/bin/activate

4. Once the virtual environment is activated, we need to install all requirements for this CDK project.
We can do this using pip and the requirements . txt file that the CDK created for us:

python3 -m pip install -r requirements.txt

5. You should now have a directory structure like the following:

README . md

app.py

cdk.json
requirements-dev.txt
requirements.txt
secrets sample

F— _init_ .py

CTTTTTT

167

168 Managing Secrets and Encryption Keys with AWS Secrets Manager and KMS

| L— secrets sample stack.py
— source.bat

L tests
— init .py
L— unit
— _ init_ .py

L— test secrets sample stack.py

6. With the setup done, we can start writing our CDK code. To do so, open the secrets sample/
secrets sample stack.py file with a text editor such as Visual Studio Code.

7. The CDK organizes its constructs by Python modules that correspond to AWS services. We'll
need to import the module for Secrets Manager, which is called aws_secretsmanager.
We'll import it as the shorthand, sm. In addition, we'll also import the built-in j son module.
Your import section should look like the following code snippet:

import json
from aws_cdk import (
Stack,
aws_secretsmanager as sm,
)

from constructs import Construct

8. Inthe SecretSampleStack class and inside the constructor, we can now define our secret.
We start by defining our generation configuration. secret string template isaJSON-
formatted dict that contains all the additional properties we want to store inside of the secret,
such as the username. These will be handled as plaintext and shown accordingly in the AWS
console. It also contains, in the generate string key property, the key of the secret
property. This property (the Password key, in our example) will be generated automatically:

gen config = {

"secret string template": json.dumps ({"Username":
"admin"}),

"generate string key": "Password"

}

9. Next, we can create our secret. In this example, we give the secret the CDK-internal
ExampleSecret ID and pass the previously created gen _config as the generate
secret string property:

secret = sm.Secret (self, "ExampleSecret",
generate secret string=gen config

Storing secrets with AWS Secrets Manager

Your entire class should look like this:

from aws_ cdk import (
Stack,
aws_secretsmanager as sm,
)
import json
from constructs import Construct
class SecretsSampleStack (Stack) :

def _ init_ (self, scope: Construct, construct_id: str,
**kwargs) -> None:

super (). init (scope, construct id, **kwargs)
The code that defines your stack goes here
gen config = {

"secret string template": json.dumps ({"Username":
"admin"}),
"generate string key": "Password"
secret = sm.Secret (self, "ExampleSecret",

generate secret string=gen config

10. Going back to the command line, we can now deploy this CDK stack. We first set the Region
to which we want to deploy our CDK stack using the following export. In this example, the
secret will be deployed into the eu-central-1 Region:

export AWS DEFAULT REGION=eu-central-1
11. If this is your first time using the CDK with this account and in this Region, you need to
bootstrap the account. This will set up the resources that are required by the CDK to provision

your infrastructure. This is only required once per account and Region. You can do so by
running the following command:

cdk bootstrap

12. To deploy the stack, type the following deploy command:

cdk deploy

The output from the previous command should look similar to this:

SecretsSampleStack: deploying... [1/1]
SecretsSampleStack: creating CloudFormation changeset...
SecretsSampleStack

}f- Deployment time: 11.79s

Stack ARN:

169

170

Managing Secrets and Encryption Keys with AWS Secrets Manager and KMS

arn:aws:cloudformation:eu-central-1l:<account id>:stack/
SecretsSampleStack/12b866b0-6edc-1lef-acfc-0a0943c62£3b

Total time: 28.17s

Once the CDK stack is deployed, we can see our newly created secret in the Overview tab in AWS
Secrets Manager in the AWS console. The following screenshot shows the Overview tab of the secret
page. It shows the secret, including our username as well as the password that was randomly generated.

Overview Rotation Versions Replication Tags

Secret value info Close Edit
Retrieve and view the secret value.

Key/value Plaintext

Secret key Secret value

Username 3 admin

Password Yqrt" :iRG1BvT]BE[Fo$ Hkrugm:H3.3

Figure 8.1 — The secret we created via the CDK

In this example, we have created a secret using the CDK. We also had the secret (in this case, the
password) be auto-generated. But what about cases where we already have a password that we want
to write into a secret? In the next section, well do that using Terraform.

Creating secrets in Terraform

When we look at configuring secrets from IaC, there is one issue that we need to solve. How do we
prevent the cleartext secrets from going into version control? The whole purpose of Secrets Manager is
to have a secure and access-restricted service where we can manage our secrets. Putting them into a
source code repository with all the Terraform code would thus defeat the purpose. In the previous CDK
example, you saw how a secret was generated. In this example, we'll use Terraform and environment
variables to provision a secret such as a password that is not generated by Secrets Manager without it
being written explicitly in the Terraform code.

To do this, follow these steps:

1. Create a new directory called t £_secrets and navigate into it using the cd command:

mkdir tf secrets
cd tf secrets

2. Init, create a file called main. t £ and open it in a code editor such as Visual Studio Code.

Storing secrets with AWS Secrets Manager

Inside the file, we'll first define our provider and the desired Region (eu-central-1,in
this example):

provider "aws" {
region = "eu-central-1"

}

Next, we define a variable that will hold our secret value. Notice how we don’t define a type
or default value for it:

variable "secret value" {}

We can then create the secret itself using the aws secretsmanager secret resource.
Here, we define the name and description of our secret:

resource "aws secretsmanager secret" "tf secret" ({
name = "tf secret"
description = "Secret created from terraform"

}

Secrets Manager versions its secrets. So, instead of putting the value of a secret inside the
secret itself, in Terraform, we define aws _secretmanager secret version, which
references our previously created secret resource and also passes the JSON we want to store
inside of the secret. Here, we are passing a username and the password from the variable
defined in the beginning:

resource " aws_secretsmanager_secret_version " ”tf_secret_version "

{
secret_id = aws_secretsmanager_ secret.tf secret.id
secret string = jsonencode ({
Username = "admin"
Password = var.secret value
3]
}

With our Terraform code defined, we can now go ahead and deploy it. At this point, you might
be wondering how we will pass the value into Terraform since, so far, secret_value isan
empty variable. We can do this by defining an environment variable called TF_ VAR secret
value before running terraform apply. This works with any variable in Terraform. You
just need to prefix the name of the variable in Terraform with TF_ VAR and use that as the
name of the environment variable.

Next, run terraform init to set up your workspace and download the required providers:

terraform init

171

172 Managing Secrets and Encryption Keys with AWS Secrets Manager and KMS

8. Finally, we can run terraform apply. In the output shown in the following screenshot,
notice how Terraform will mask the value of the secret by putting (sensitive value)
instead of the actual string:

aws_secretsmanager_secret_version.tf_secret_version will be created
resource "aws_secretsmanager_secret_version" "tf_secret_version" {
arn = (known after apply)
id (known after apply)
secret_id (known after apply)
secret_string (sensitive value)
version_id (known after apply)
version_stages = (known after apply)

}
Plan: 2 to add, @ to change, @ to destroy.
Do you want to perform these actions?

Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.

Enter a value: [

Figure 8.2 - Terraform masking the secret value in its apply output

9. Once Terraform is done deploying the resources, we can see our new secret, similar to the
following screenshot, in the AWS console.

tf_secret

Secret details Cc Actions ¥

Encryption key Secret description
aws/secretsmanager Secret created from terraform
Secret name

[tf_secret

Secret ARN
[am:aws:secretsmanager:eu-

central- 1 | s cret:tf secret-
RLAOLZ

Overview Rotation Versions Replication Tags

Secret value info

Retrieve and view the secret value

Key/value Plaintext

Secret key Secret value

Password my_super_secure_password
Username [P admin

Figure 8.3 — The secret that was created using Terraform in the AWS console

Storing secrets with AWS Secrets Manager

Now that we have seen how we can use different IaC techniques to provision a secret, let’s have a look
at how we can retrieve such a secret.

Accessing secrets from an AWS Lambda function using Boto3

With our secrets programmatically created, we also need a way to programmatically retrieve them. In
this section, we'll be retrieving secrets using the Boto3 SDK and Python. We'll be executing our Python
code not on our machine but, rather, in an AWS Lambda function that well provision using the CDK.

To follow along in this section, please either download the solution from GitHub or follow the steps
described in the previous section, Creating secrets in the CDK.

Before we get started with creating our Lambda function, let’s do a quick summary of what Lambda is.
What is AWS Lambda?

AWS Lambda is a service that provides serverless compute and function-as-a-service (FaaS)
functionality within AWS. When we think about compute infrastructure, an easy way to distinguish
different types is by seeing how much of the underlying infrastructure you need to manage.

In the case of an EC2 instance, we are essentially managing the entire virtual machine. Containers
go one level above that by abstracting the host operating system. Lambda and other Faa$ services go
one step above. In Lambda, we only have to manage the business logic we are writing. The service
then takes care of hosting and scaling the underlying compute capacity for us.

(N

Note

The underlying virtualization technology for Lambda is a virtualization technology called
Firecracker. Firecracker is written in Rust and is open source. You can find the source code
on GitHub at https://github.com/firecracker-microvm/firecracker and
the documentation at https://firecracker-microvm.github.io/.

- J

With Lambda, we can write functions in a variety of modern programming languages, such as Python,
JavaScript, or Go, and run them on AWS.

Writing a Lambda function to read our previously created secret

To write the Lambda function, well need to go back into the CDK project we created for the previous
section. To do so, open the folder in a code editor such as Visual Studio Code and then follow these steps:

1. Openup the secrets sample/secrets_sample stack.py file. At this point, the
file should look like the following. Note the Durat ion and lambda imports that were added,
as well as the addition of the import os statement:

from aws_cdk import (
Duration,

173

https://github.com/firecracker-microvm/firecracker
https://firecracker-microvm.github.io/

Managing Secrets and Encryption Keys with AWS Secrets Manager and KMS

Stack,
aws_secretsmanager as sm,
aws lambda as lambda
)
import json
import os
from constructs import Construct
class SecretsSampleStack (Stack) :

def _ init_(self, scope: Construct, construct_id: str,
**kwargs) -> None:
super (). init (scope, construct id, **kwargs)

The code that defines your stack goes here
gen config = {

"secret string template": json.dumps ({"Username":
"admin"}),
"generate string key": "Password"
secret = sm.Secret (self, "ExampleSecret",

generate_secret string=gen config

To better organize the code of our project, it is common to create a source code directory for
the Lambda functions. Let’s go ahead and create a new src folder and in it, another folder for
our Lambda function called get _secret func:

mkdir src
mkdir src/get secret func

Go back to the secrets _sample_ stack.py file. In it, let’s first write the code to define the
location of our Lambda source code. We'll always make the paths relative to our secrets
sample stack.py file. Inside the constructor of our SecretSampleStack class, right
below the definition of our secret, add the following code, which retrieves the absolute path
of the Python file. We can then use that absolute path to create a path that points toward our
folder containing the source code for the Lambda function:

current dir = os.path.dirname (os.path.abspath(file))

lambda code path = os.path.join(current dir, "..", "src", "get
secret func")

Next, we can create a Lambda function using the Funct ion construct. We first define the
internal ID and set it to RetrieveFunction. Next, we pass a human-readable function
with the name Get SecretFunc as the value of the function name property. With
the code property, we can define the path to the directory where our source code sits. The
handler property defines the name of the handler. Here, func . handler means that the

Storing secrets with AWS Secrets Manager

entry point for our Lambda function will be a Python function called handler in a file called
func.py. We then define a runtime for our code, in this case, Python version 3.11. We can
also pass environment variables using the environment property. In this example, we are
passing the Amazon Resource Name (ARN) of the previously created secret as an environment
variable. Finally, we set the timeout of this function to 10 seconds:

func = lambda .Function(self, "RetrieveFunction",

function name="GetSecretFunc",
code=lambda .Code.from asset (lambda code path),
handler="func.handler",
runtime=lambda_.Runtime.PYTHON_3_11,
environment={

"SECRET ARN": secret.secret arn
b

timeout=Duration.seconds (10)

With the function defined, we could now go ahead and deploy the function. However, so far,
the function doesn’t have permission to access our secret.

The following is one of the big strengths of the CDK. For services where L2 constructs (such as
Function or Secret) exist, least-privilege IAM permissions often come with them. Instead
of writing an IAM policy that allows the Lambda execution role to retrieve our secret manually,
we can use the grant _read () method of the secret object to generate this policy for us.
Below the definition of our Lambda function, enter the following:

secret.grant read (func)

And that is it. Upon deployment of the stack, this will generate a new IAM policy that grants
the Lambda function the right to have read-only access to our secret. Your final file should
look like this:

import os
import json
from aws_cdk import (
Duration,
Stack,
aws_sgs as sgs,
aws_secretsmanager as sm,
aws_lambda as lambda_,
)
from constructs import Construct
class SecretsSampleStack (Stack) :

def init (self, scope: Construct, construct id: str,
**kwargs) -> None:

super (). init (scope, construct id, **kwargs)

175

176 Managing Secrets and Encryption Keys with AWS Secrets Manager and KMS

The code that defines your stack goes here
gen _config = {
"secret string template": json.dumps ({"Username":
"admin"}) ,

"generate string key": "Password"
secret = sm.Secret (self, "ExampleSecret",
generate secret string=gen config
)
current dir = os.path.dirname (os.path.abspath(file))

lambda code path = os.path.join(current dir, "..",
"src", "get secret func")

func = lambda .Function(self, "RetrieveFunction",

function name="GetSecretFunc",
code=lambda_.Code.from asset (lambda code path),
handler="func.handler",
runtime=lambda .Runtime.PYTHON 3 11,
environments={

"SECRET ARN": secret.secret arn
b
timeout=Duration.seconds (10)

)

secret.grant read (func)

7. With the CDK code done, we can now write our Lambda function. Create a new file called
func.pyinthe src/get secret func folder and open it in a text editor such as Visual
Studio Code.

8. WEelll first import a few functions, namely, the built-in os and j son modules. The default
runtime for Python in Lambda comes with bot o3 pre-installed, so we don’t have to install
this package:

import os
import json
import boto3

9. Next, we use the os module to retrieve the environment variable we previously set in the CDK
deployment and create a bot o3 client for Secrets Manager. To do so, type the following:

SECRET_ARN = os.environ.get ("SECRET ARN")
sm_client = boto3.client ("secretsmanager")

Storing secrets with AWS Secrets Manager

10.

11.

12.

13.

14.

Next, we need to define the Python function that Lambda will call. As per the definition in our
CDK code, this function needs to be called handler. It takes two arguments: event and a
context dictionary.

Inside the function, we retrieve the secret value via the Get SecretValue API operation,
read the contained JSON, and then return a string containing the password and the username
from the secret. In a real-life application, you could use these credentials now to authenticate
against another system such as a database:

resp = sm _client.get secret value (SecretId=SECRET ARN)

secret obj = json.loads(resp["SecretString"])
return "Read password: " + secret obj["Password"] + " Read
username: " + secret obj ["Username"]

With the code of our Lambda function done, we can now deploy this stack. We first set the Region
that this stack will be deployed into via the AWS DEFAULT REGION environment variable:

export AWS DEFAULT REGION=eu-central-1

If this is your first time using the CDK with this account and in this Region, you need to
bootstrap it. This is only required once. You can do so by running the following command.
Bootstrapping creates some resources, such as an S3 bucket to store your assets. You can find
more information on bootstrapping in this documentation: https://docs.aws.amazon.
com/cdk/v2/guide/bootstrapping.html.

Here’s the command:

cdk bootstrap

Next, start the deployment by running the following command:

cdk deploy

When the CDK detects that it is creating new IAM permissions (as is the case in this example,
where we are granting our Lambda function access to our secret), the CDK shows a summary
table of all the changes that are proposed and asks us to confirm these.

The following screenshot shows the proposed changes. As you can see in the first row, we
grant the principal of the execution role of our Lambda function the DescribeSecret and
GetSecretValue API actions on the resource of our example secret:

177

https://docs.aws.amazon.com/cdk/v2/guide/bootstrapping.html
https://docs.aws.amazon.com/cdk/v2/guide/bootstrapping.html

178 Managing Secrets and Encryption Keys with AWS Secrets Manager and KMS

IAM Statement Changes

Resource Effect | Action Principal Condition

IAM Policy Changes

Resource Managed Policy ARN

(NOTE: There may be security-related changes not in this list. See https://githu
b.com/aws/aws-cdk/issues/1299)

Do you wish to deploy these changes (y/n)? I

Figure 8.4 - Output from the CDK when applying a change that involves the creation of an IAM policy

Once the CDK stack is deployed, the terminal will show a result similar to this:

SecretsSampleStack: deploying... [1/1]
SecretsSampleStack: creating CloudFormation changeset...
SecretsSampleStack

;f Deployment time: 22.35s

Stack ARN:

arn:aws:cloudformation:eu-central-1:317322385701:stack/
SecretsSampleStack/12b866b0-6edc-11lef-acfc-0a0943c62£3b

:* Total time: 36.49s

15. With our function deployed, we can test it by running the Lambda function from the command
line. Note that this will execute the function in the AWS cloud and not on our local machine.
We use the invoke command in the AWS CLI. As arguments, we need to pass the function
name (GetSecretFunc) and a file (out . txt, in this example) to which the output of the
function will be written:

aws lambda invoke --function-name GetSecretFunc out.txt

Integrating Amazon RDS with AWS Secrets Manager to rotate database credentials 179

16. When running this command, you’ll get a result like the following. A status code of 200 means
that the function executed successfully, and you should see a new file called out . txt:

{

"StatusCode": 200,
"ExecutedVersion": "SLATEST"

}

17. We can have a look at the output from the function by using the cat command:

cat out.txt

18. The output then looks similar to the following. Notice how this is the same secret value that
we previously saw in the AWS console:

"Read password: Yqgrt\":iRG1BvT]BE [Fos$ Hkrugm:H3.3 Read username:
admin"

In this section, you have seen how to programmatically access a secret in a Lambda function and use
the Boto3 SDK for Python. Of course, this doesn’t only work for secrets we have previously created
but also for secrets that were created by another service such as RDS. In the next section, you'll see
how we can integrate RDS to add the credentials for a database into Secrets Manager.

Integrating Amazon RDS with AWS Secrets Manager to
rotate database credentials

We have seen how we can programmatically create and retrieve a secret. But what about the usage of
Secrets Manager together with other services such as RDS? Since the use case of storing and rotating the
username and password of a database system is so common, there is an integration between Amazon
RDS (which we introduced in the previous chapter) and Secrets Manager. In this section, we are going
to create an RDS cluster and delegate the creation and rotation of the secret to Secrets Manager.

To create a new RDS cluster with credentials managed by Secrets Manager, follow these steps:

1. Inthe AWS console, navigate to the RDS service page.
2. Click on the Create database button.

3. Since the focus of this section is the integration of RDS with Secrets Manager, in the database
creation method, select Easy create, as shown in the following screenshot. If you want a more
detailed explanation of the different options available in RDS, have a look at Chapter 7, where
we created a database cluster using the Standard create mode.

Managing Secrets and Encryption Keys with AWS Secrets Manager and KMS

RDS » Create database

Create database

Choose a database creation method infe

() standard create

o

You set all of the configuration options, including ones
for availability, security, backups, and maintenance.

Easy create

Use recommended best-practice configurations. Some
configuration options can be changed after the database
is created.

Figure 8.5 — Selecting Easy create for our simple RDS cluster

4. For engine options, select Aurora (PostgreSQL Compatible), as shown in the following screenshot:

Configuration

Engine type info

() Aurora (MySQL Compatible)

S

© Aurora (PostgreSQL
Compatible)

S

O MysqQL

() MariaDB

() PostgreSQL

() Oracle

ORACLE

() Microsoft SQL Server

:’@'\ gCi)mL Server

Figure 8.6 — Selecting our database engine

5. Under Templates, select Dev/Test, as shown in the following screenshot. Since this cluster is
just for testing the integration, we can use an economical development and testing configuration
for the compute instances behind our database cluster.

Integrating Amazon RDS with AWS Secrets Manager to rotate database credentials 181

DB instance size

() Production © Dev/Test
db.r6g.2xlarge db.tdg.large
8 vCPUs 2 vCPUs
64 GIB RAM 8 GIB RAM
1.253 USD/hour 0.170 UsD/hour

Figure 8.7 - Using a development template for the compute instances of this database cluster

Next, we can define the name of our database cluster and also the configuration for our secrets. The
following screenshot shows the configuration needed to let Secrets Manager handle our password
generation and lifecycle:

DB cluster identifier
Enter a name for your DB cluster. The name must be unigue across all DB clusters owned by your AWS account in the current AWS Region.

my-database (1)

The DB cluster identifier is case-insensitive, but is stored as all lowercase {as in *mydbcluster”). Constraints: 1 to 60 alphanumeric characters
or hyphens. First character must be a letter. Can't contain two consecutive hyphens. Can't end with a hyphen.

Master username Info
Type a login ID for the master user of your DB instance.

postgres (2)

1 to 16 alphanumeric characters. The first character must be a letter.

Credentials management (3)
You can use AWS Secrets Manager or manage your master user credentials.

© Managed in AWS Secrets Manager - most secure

RDS generates a password for you and manages it
throughout its lifecycle using AWS Secrets Manager.

() self managed
Create your own password or have RD5S create a password
that you manage.

(@ If you manage the master user credentials in AWS Secrets Manager, additional charges apply. See AWS
Secrets Manager pricing [/} Additionally, some RDS features aren't supported. See limitations here [4.

Select the encryption key info
‘You can encrypt using the KMS key that Secrets Manager creates or a customer managed KMS key that you create. {4}

aws/secretsmanager (default) v| ‘ [} ‘

Add new key [4

Figure 8.8 — The secrets configuration for our database

182 Managing Secrets and Encryption Keys with AWS Secrets Manager and KMS

Here are some things to note in the preceding figure:
* Under DB cluster identifier (number 1 in the figure), we define the name/identifier for

the cluster.

* Under Master username (number 2 in the figure), we define the username used to authenticate
with this cluster. The username will be included as part of the secret that is stored in
Secrets Manager.

* Under Credentials management (number 3 in the figure), select Managed in AWS Secrets
Manager to instruct RDS to use Secrets Manager for the generation, storage, and rotation
of these secrets.

* Under Select the encryption key (number 4 in the figure), select aws/secretsmanager
(default) to use the AWS-managed key. We'll learn more about KMS-managed encryption
keys later on in this chapter.

6. Next, click the Create database button at the bottom of the page.
7. Navigate to Secrets Manager in the AWS console.

8. In the overview, you should see the newly created secret. The ARN of your database should be
included in the description of the secret. The following screenshot shows an example of the overview:

AWS Secrets Manager > Secrets

Secrets C Store a new secret
Q, Filter secrets by name, description, tag key, tag value, owning service or primary Region 1 &
Secret name Description Last retrieved (UTC)

Secret associated with primary RDS DB cluster:

rdslcluster-7a9bb588-d6b3-4bdc-b68b-ba457470c4e8 arn:aws:rds:eu-central-1 :_cluster:my-
database

I N s
B DN =
Figure 8.9 - List of available secrets, including the secret created by RDS

9. By clicking on the secret name, you’ll get a detailed overview of the secret. Click the Retrieve
secret value button, as highlighted in the following screenshot, to reveal the secret that was set:

Overview Rotation Versions Replication Tags

SecrEt value e

Retrieve and view the secret value.

Figure 8.10 — Using the Retrieve secret value button to unveil the

username and password stored in this secret

Integrating Amazon RDS with AWS Secrets Manager to rotate database credentials 183

10. The overview now shows the key-value pairs associated with this secret. This password could be
retrieved programmatically, as shown in the example using Boto3 and Lambda in the Writing
a Lambda function to read our previously created secret section. You can see, in the following
screenshot, how the secret contains the username we set in the RDS configuration dialog as
well as an auto-generated password string:

Overview Rotation Versions Replication Tags

Secret value info Close ‘ Edit |
Retrieve and view the secret value,

Key/value Plaintext

Secret key Secret value

username postgres

password +-2bpp9kWNg#FCCn]U*I+G)QZ2x

Figure 8.11 - The unveiled username and password

11. By clicking on the Rotation tab, we see the default rotation settings. In the following screenshot,
you can see that rotation is enabled and that the password will be rotated every 7 days. If we
know that a password was compromised, we can also use the Rotate secret immediately button
to trigger an immediate rotation of our secret.

Rotation configuration info Rotate secret immediately ‘ Edit rotation |

Rotation status
@ Enabled

Rotation schedule

7 days
Last rotated date (UTC)
Next rotation date (UTC)

The next rotation is scheduled to occur on or before this date.
Mon, September 16, 2024 at 23:59:59 UTC

Figure 8.12 - The rotation configuration, indicating our rotation schedule and rotation status
So far in this chapter, we have seen how to create secrets using IaC, how to retrieve them programmatically

in Python, and finally, how to integrate RDS with Secrets Manager for automated secrets management
and rotation.

184

Managing Secrets and Encryption Keys with AWS Secrets Manager and KMS

Note

In the previous section, we saw how to create a secret in the CDK. When dealing with secrets that
were created using the AWS console or by a service such as RDS, the following snippet shows
how you could import a secret via its ARN. You could then use the same grant_read ()

function to allow a Lambda function (or any other role in the CDK) to read the secret:

secret arn = "<insert arn of secret here>"
secret = Secret.fromSecretCompleteArn (self, "ImportedSecret",
secret arn)

N\ J

Next, we'll have a closer look at another AWS service, called AWS Key Management Service (KMS),
which is used for managing our encryption keys in AWS.

Handling encryption keys with AWS KMS

Data encryption is a central aspect of the cloud and, in AWS, encryption is mainly done via KMS.
We have previously seen KMS as an option. For example, in the previous section, when selecting the
encryption key for our secrets, we saw the option to define a different KMS key. In this section, well
get a brief overview of KMS before using it to configure a different encryption key for an S3 bucket
to show how KMS is integrated into a variety of services.

Note

This section assumes that you have a basic understanding of public/private key cryptography. If
that is not the case, you can acquaint yourself with the concept by visiting ht tps : //docs .
aws .amazon.com/crypto/latest/userguide/cryptography-concepts.html.

What is KMS?

When we talk about encryption, we usually talk about the storage and usage of encryption keys. Before
talking about how we can create and use keys, let’s briefly discuss storage. KMS stores its encryption
keys in hardware security modules (HSMs) in a way that they can’t be accessed externally. The HSMs
are validated under the United States National Institute of Standards and Technology (NIST) Federal
Information Processing Standards (FIPS) 140-2 Cryptographic Module Validation Program. With
FIPS 140-2, NIST has a standard for the requirements of cryptographic modules.

' N
Note

The details of how KMS handles keys as well as the cryptographic concepts underneath it could
fill an entire book. If you want to learn more, AWS has published a summary paper that can
be found at https://docs.aws.amazon.com/kms/latest/cryptographic-
details/intro.html.

https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html
https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html
https://docs.aws.amazon.com/kms/latest/cryptographic-details/intro.html
https://docs.aws.amazon.com/kms/latest/cryptographic-details/intro.html

Handling encryption keys with AWS KMS

In KMS, we generally diftferentiate between two different types of keys: AWS-managed keys and
customer-managed keys (CMKs). As the name suggests, AWS-managed keys are managed by the
service. We saw such a key in the previous section when we selected the aws /secretsmanager
key for encrypting our database secrets.

Services such as Amazon S3 use AWS-managed keys by default but we can configure them to use CMKs.

KMS keys are regional by default. This means that, by default, a key only exists in the Region it was
created in. If that Region were to go down, all access to data that was encrypted using that key would
be inaccessible for the duration that the Region is unreachable. We can work around this by creating
a multi-Region key. We will see how to do this in Chapter 11.

Changing an S3 bucket to use a CMK

So, let’s see CMKs in action. In this section, we'll create a CMK and then use it to encrypt objects in
a bucket. Before we do this, let’s first create a bucket with default encryption (meaning server-side
encryption using AWS-managed keys) and upload a file to it:

1. Inthe command line, use the following command to create a new bucket:

aws s3 mb s3://<your bucket name>

2. We can check the current encryption of our bucket by running the following command:

aws s3api get-bucket-encryption --bucket <your bucket name>

3. 'The output will look like the following:

{
"ServerSideEncryptionConfiguration": {
"Rules": [
{
"ApplyServerSideEncryptionByDefault!": {
"SSEAlgorithm": "AES256"
Yo
"BucketKeyEnabled": false
1
1
!
1

Notice the SSEAlgorithm property defining the encryption to be AES256, which is the
value for AWS-managed encryption (also known as SSE-S3).

185

186 Managing Secrets and Encryption Keys with AWS Secrets Manager and KMS

4.

Let’s create a text file, add some placeholder text to it, and then upload it to our previously
created S3 bucket:

touch test.txt
echo "testl1l233445" >> test.txt
aws s3 cp test.txt s3://<your bucket names/

Now that we have a bucket that is currently using the AWS-managed key, let’s go to KMS and
create our own CMK. To do so, open the AWS console and search for KMS or follow this
link: https://eu-central-1.console.aws.amazon.com/kms/home?region=eu-
central-1#/kms/home.

On the KMS overview page, click the Create a key button to create a new key.

In the wizard, select Symmetric for Key type and Encrypt and decrypt for Key usage, as
shown in the following screenshot:

Configure key

Key type Help me choose [4

© symmetric) Asymmetric
A single key used for encrypting and decrypting data or A public and private key pair used for encrypting and
generating and verifying HMAC codes decrypting data, signing and verifying messages, or

deriving shared secrets

Key usage Help me choose [

© Encrypt and decrypt () Generate and verify MAC

Use the key only to encrypt and decrypt data. Use the key only to generate and verify hash-based
message authentication codes (HMAC).

» Advanced options

Cancel Next

Figure 8.13 - The key configuration for our new KMS key

https://eu-central-1.console.aws.amazon.com/kms/home?region=eu-central-1#/kms/home
https://eu-central-1.console.aws.amazon.com/kms/home?region=eu-central-1#/kms/home

Handling encryption keys with AWS KMS 187

8. Next, define a name (or alias) for this key:

Add labels

Alias

¥ou can change the alias at any time. | garn more | 24}

Alias

TestKey I

Description - optional

‘You can change the description at any time.

Description

Description of the key

Tags - optional

You can use tags to categorize and identify your KMS keys and help you track your AWS costs. When you add tags to
AWS resources, AWS generates a cost allocation report for each tag. Learn more [

This key has no tags.

Add tag

You can add up to 50 more tags.

Figure 8.14 - Defining the alias of our key

9. On the next two pages, you define the admin users that have the right to manage (including
deleting) your key. Note that KMS keys are not directly deleted. When a delete operation on
a KMS key is issued, it is deactivated but kept for a time threshold. This is to prevent accidental
deletion of keys. In the dialog, select the users that you want to have admin rights to your key.
Choose the IAM user that you are using:

188 Managing Secrets and Encryption Keys with AWS Secrets Manager and KMS

Define key administrative permissions

Key administrators (1/57)

Choose the IAM users and roles who can administer this key through the KMS API. You may need to add additional permissions for the users
or roles to administer this key from this console. Learn more E

Q, Search Key administrators ‘ 1 2 3 4 5 6 >
-] Name v | Path v | Type v
O ! User
O ! User
(] / User
packt ! User
O ! User
O ! Role
O ! Role
i} [service-role/ Role
i} [service-role/ Role
i} [service-role/ Role
Figure 8.15 — Definition of the key administrator
10. Click Create Key to create the new KMS key.
11. Now, we can navigate to S3 and change our bucket. Search for S3 in the AWS console.
12. In the list that appears in the AWS console, find your previously created bucket and click on
its name.
13. Navigate to the Properties tab and find the Default encryption panel, as shown in the following

screenshot. In this panel, you can see that the bucket currently uses SSE-S3 (so AWS-managed
keys) for encryption. Click the Edit button to change the default encryption.

Handling encryption keys with AWS KMS

Default encryption info

Server-side encryption is automatically applied to new objects stored in this bucket.

Encryption type Info
Server-side encryption with Amazon 53 managed keys (SSE-53)

Bucket Key

When KMS encryption is used to encrypt new objects in this bucket, the bucket key reduces encryption costs by lowering calls to
AWS KMS5. Learn more E

Disabled

Figure 8.16 — Default encryption for our bucket

14. In the dialog, select Server-side encryption with AWS Key Management Service keys (SSE-
KMS). Next, select Choose from your AWS KMS keys and, in the dropdown, select the
previously created key. Also, select Enable for the Bucket Key field. These selections are shown
in the following screenshot:

Default encryption

Server-side encryption is automatically applied to new objects stored in this bucket.

Encryption type Info
() Server-side encryption with Amazon 53 managed keys (SSE-53)

b Server-side encryption with AWS Key Management Service keys (SSE-KMS)]

(O Dual-layer server-side encryption with AWS Key Management Service keys (DSSE-KMS)
Secure your objects with two separate layers of encryption. For details on pricing, see DSSE-KMS pricing on the Storage tab of
the Amazon S5 pricing page. [

AWS KMS key info

b Choose from your AWS KMS keys

() Enter AWS KMS key ARN

Available AWS KMS keys

arm:aws:kms:eu-central-1:317322385701:key... vl ‘ (& ‘ ‘ Create a KMS key [4

Bucket Key
Using an 53 Bucket Key for S5E-KMS reduces encryption costs by lowering calls to AWS KMS. 53 Bucket Keys aren't supported for
DSSE-KMS. Learn more [

() Disable

/\ Changing the default encryption settings might cause in-progress replication and Batch Replication
jobs to fail. These jobs might fail because of missing AWS KMS permissions on the IAM role that's
specified in the replication configuration. If you change the default encryption settings, make sure
that this 1AM role has the necessary AWS KMS permissions. Learn more [4

Figure 8.17 — Selections for changing the bucket encryption settings

189

190

Managing Secrets and Encryption Keys with AWS Secrets Manager and KMS

15. With the changes done, we can rerun our encryption command to see that the encryption was
changed on our bucket. To do so, run the following command:

aws s3api get-bucket-encryption --bucket <your bucket namex>

16. The output should look similar to this:

{

"ServerSideEncryptionConfiguration": {
"Rules": [

{

"ApplyServerSideEncryptionByDefault": {
"SSEAlgorithm": "aws:kms",

"KMSMasterKeyID": "arn:aws:kms:eu-central-
l:<account id>:key/8e7266f2-<redacted>"

b

"BucketKeyEnabled": true

}

All new objects will now be encrypted using our new CMK. But what about the one previously
updated? We can simply copy all objects from our bucket back into the same bucket. This will trigger
re-encryption with the new key. This can be particularly useful when we want to retire an old CMK:

aws s3 cp s3://<bucket name> s3://<bucket name> --recursive

With that, we have successfully changed our bucket to use a CMK from KMS and seen how KMS
provides encryption keys to services across AWS.

Summary

In this chapter, we have explored two services: AWS Secrets Manager and KMS. AWS Secrets Manager
lets you manage your secrets, such as database credentials. We have seen how to programmatically create
secrets with different IaC tools (such as the CDK or Terraform), how Secrets Manager is integrated
into services such as RDS, and how we can retrieve secrets in a Lambda function.

Then, we saw how KMS is used to manage encryption keys in AWS, how we can create our own
encryption keys, and finally, how we can configure S3 to use such a CMK.

In the next chapter, we'll have a deeper look at monitoring our AWS services using CloudWatch and SNS.

Part 4:
Monitoring, Metrics, and the
Backup Layer

The fourth part discusses how we can implement observability, metrics, alerting, and centralized
logging through the use of CloudWatch and SNS. Equipped with the right tools to observe our
infrastructure, we'll then see how we can efliciently implement backup plans for our infrastructure,
what disaster recovery options are available to us, and how we can test the resilience of our deployed
infrastructure through chaos engineering.

This part contains the following chapters:

o Chapter 9, Centralized Logging and Monitoring with Amazon CloudWatch
o Chapter 10, Centralizing Cloud Backup Solutions
o Chapter 11, Disaster Recovery Options with AWS

o Chapter 12, Testing the Resilience of Your Infrastructure and Architecture with AWS Fault
Injection Service

9

Centralized Logging and
Monitoring with Amazon
CloudWatch

So far, we have seen how we can use AWS to build the infrastructure required for deploying modern
applications. But what about monitoring our application and infrastructure once it is deployed? With
the often distributed nature of applications on AWS, this can become a challenge.

In this chapter, we'll look into AWS CloudWatch, a logging and metrics service provided by AWS that
can serve as the centralized dashboard for all our infrastructure and application metrics.

CloudWatch has two key types of operational data that can be ingested and viewed: logs and metrics.
Logs are all the textual outputs (such as debug messages or error messages) that your application and
infrastructure produce while metrics are performance numbers, such as the CPU utilization or the
number of requests per second being handled by your application. These metrics can serve a variety
of purposes from automated scaling of your infrastructure to alerting you of unusual activities such
as a spike in CPU utilization, which could indicate issues with your application or infrastructure.

In the book we have so far seen how we can use AWS to build the infrastructure required for deploying
modern applications. But what about monitoring our application and infrastructure once it is deployed?
Especially due to the often distributed nature of applications on AWS this can become a challenge.

In this chapter, we'll have a look at both the metrics and log side of CloudWatch.

The topics covered in this chapter are:

« Anintroduction to CloudWatch monitoring

« Why do we need log management

 Instrumenting an EC2 instance to ingest custom metrics and send custom logs
o An introduction to Simple Notification Service (SNS)

o Automated notifications to email and Slack

194

Centralized Logging and Monitoring with Amazon CloudWatch

Technical requirements

Before following this section, please create an AWS account for yourself. You can sign-up at https: //
aws .amazon . com. A basic understanding of AWS (for example, knowing what a service is) will
be beneficial.

A basic understanding of Python will help with the programming-based sections of this chapter.

This chapter also assumes that you have a running EC2 instance that can be accessed via SSH. You can
refer to the instructions in Chapter 4 if you need a step-by-step guide on setting up a new instance.

All scripts from this section can be found at the following GitHub link: ht tps: //github.com/
PacktPublishing/AWS-for-System-Administrators-Second-Edition

The CiA video for this chapter can be found at https://packt.link/KmPdt

An introduction to CloudWatch for metrics

CloudWatch is well integrated with most AWS services such that they publish performance metrics
into CloudWatch. In order to keep things organized, metrics are published under service-specific
namespaces. A namespace (for example, AWS /EC2) contains all the metrics related to the EC2 service.
Typically, the metrics can be further subdivided into groups. For example, in EC2, we usually want
to look at all metrics that are related to an instance (Per - instance metrics) or all metrics related
to an Auto Scaling group (Per-Auto Scaling group metrics).

Note

You can find a list of all the possible metrics at the following URL: https://docs.aws.
amazon.com/AmazonCloudWatch/latest/monitoring/aws-services-
cloudwatch-metrics.html.

The types of metrics that are available will depend on the service. For each instance, EC2 publishes
host-level metrics such as the following:

o CPU utilization
o Network packets/data in and out
o Disk read/write

o Status checks

The following figure shows the CloudWatch metrics graph for the CPU utilization of an EC2 instance.

https://aws.amazon.com
https://aws.amazon.com
https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition
https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition
https://packt.link/KmPdt
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-services-cloudwatch-metrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-services-cloudwatch-metrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-services-cloudwatch-metrics.html

Why do we need log management?

Untitled graph & [an 126 a0 3¢ w cuscom B [utcomemne w | (Cacusas v) [Lo v |(c[~
sar -
159
i
1250 s s Teas 1300 135 1z T4 2000 s 150 204z
Browse | Multisourcequery | Graphed metrics(1) | Options | Source (Cotimarn v) (Caadquery v)
2] G A0 10ps (i N #tarms
[m] [-Og4aTaBEI0ds4cE EBsWriteEytes () o sarms
O -0eda7esssgaseczio EBSEytessancets (B Ho arms
-g4aTaBET0454cTHn EBSWriteOps () Mo atarms
[m] I-da?aBs S E T EtsReadytes (D) o géarms
B -od4aroRsIddsdcfn cPuLsization () Hoatarms
O oMa7ansseisscen MetadataaTaken @ Ho atarms
[egdarapsisassczt statuscheckFalled () Na atarms
O odda7anssgasecein StatusCheekFailed_System (0 o sarms
|-Og4aTaBEI04S4czn statusCheckFailed_Irstance (D) Mo atarms

O idda?afs3sdsicet Ceured|hisanc: N siarms

Figure 9.1 — Graphical overview of the CPU utilization of our EC2 instance over 3 hours

A metric that is curiously absent from the preceding list is the memory usage of our EC2 instance.
To understand why, we have to recall that EC2 instances are virtual machines that emulate physical
hardware such as the CPU, disk, and RAM via a hypervisor. While metrics such as CPU utilization
can be determined on the hypervisor — and thus the EC2 service can publish them into CloudWatch
for us - this is not possible for RAM. Memory allocation is handled by the guest operating system
(for example, Ubuntu or Windows Server running on our EC2 instance) and it can't be inferred on
a hypervisor level.

What we need, therefore, is an agent that runs on our instance itself and lets us publish these custom
metrics to CloudWatch.

Before setting up our instance for custom metrics, let’s first explore another important CloudWatch
feature, the logs.

Why do we need log management?

When troubleshooting software system issues, logs are usually the first place we investigate. Both
applications and the underlying infrastructure generate log messages, and we typically distinguish
between two types:

o Application logs: Messages produced by applications running on our servers (for example, a
web server like Apache2).

« System logs: Messages generated by the server’s operating system (for example, a Linux distribution).

Application logs don’t necessarily report only errors. For instance, Apache2 also produces access logs
that record every web request processed by the server.

195

196

Centralized Logging and Monitoring with Amazon CloudWatch

Logs are usually either written to STDOUT or to a log file. A basic approach to troubleshooting during
an outage is to log into the system, for example, a server, where these log files reside and analyze them
using command-line tools like cat, grep, or sed to look for patterns.

This approach, however, has a few downsides:

o Inlarge-scale deployments, where we might have hundreds or thousands of servers, logging
into each server individually to analyze logs is not feasible.

o The server that stores our logs could be unreachable, meaning we can no longer access the files.

One of the most important challenges comes with the distributed nature of many modern software
systems. In a scenario such as a microservices architecture, the entire software system is made up of
multiple subsystems that interact with each other to provide services to users.

The following figure shows a simplified version of a microservices architecture for a social
networking application:

User Relationship

»| Contact Service N
7 Service

A4

B Front End

h 4

Message Service

User

> Feed Service

Figure 9.2 — A simple component overview for a social network application

In this architecture, each box represents a service. A user accesses the functionality provided by the
software, for example, the ability to send a message to another user, through the front end. The front
end then communicates with backend services that provide the actual functionality. Each rectangle
represents its own software system running on its own infrastructure.

Imagine a user approaches you with a problem regarding sending a message. To troubleshoot it, you
would have to log into each of the services, find the relevant logs, and use that information to solve
the issue.

An introduction to CloudWatch for logs

(N
Additional Information

The issue of logging within a distributed system is one of the most cited examples of a cross-
cutting concern. Such concerns occur when functionality, like tracing a user’s request through

a system, cannot be addressed by looking into a single component but rather cuts across
multiple components.

- J

This is where centralized log management becomes crucial. By storing logs in a central place, we get
a single pane of glass to index, search, and analyze our logs.

Until now, we have discussed centralized logging in the abstract. Let’s now get more specific with AWS.

In AWS, we have an additional category of logs, logs from managed services. In Chapter 7, we saw how
to set up a database instance using RDS. But where can we see the logs created by that RDS instance?
In AWS, managed services, such as RDS or Lambda, usually push their logs into CloudWatch Logs.

An introduction to CloudWatch for logs

Logs in CloudWatch are organized into log groups. Each log group has a name that identifies it. Since
log groups are regional resources, the name must be unique within the same region.

This means two different log groups in the eu-central -1 region cannot both be called AppLogs,
although you could have a group named AppLogs in eu-central-1 and another in us-east-1.

Log group names can be between 1 and 512 characters long. While there is no enforced naming
convention, AWS typically follows a path-based pattern:

+ Log groups created by RDS start with the prefix aws /rds/.

+ Logs for Lambda functions are found under aws /lambda/.

As a result, when defining names for your log groups, you cannot start them with the prefix aws /.

In theory, logs can be stored forever, however, logs typically tend to become less relevant as they
become older. To accommodate this, CloudWatch lets you configure a retention period for the logs
within your log group. This ranges, at the time of writing, from 1 day to 10 years, or you can choose
to never expire your logs.

Since every log has a timestamp, CloudWatch will retain your logs up to their retention period and
then delete them. Retention periods can be changed after the creation of a log group and can be used
to optimize costs. In CloudWatch Logs, at the time of writing, you pay for every gigabyte of logs stored,
so having CloudWatch automatically delete old and unneeded logs will save you money.

One final concept when discussing log groups is the storage class. Similar to how Amazon S3 offers
different storage classes when creating a bucket, CloudWatch lets you choose between, at the time of
writing in May 2025, two different log classes, Standard and Infrequent Access.

197

198

Centralized Logging and Monitoring with Amazon CloudWatch

o Standard is the default class that provides all the features of CloudWatch Logs, like ingestion,
querying, and exporting logs to S3.

o Infrequent Access lets you store and query your logs but does not support some advanced
features, such as natural language-based queries.

The benefit of using Infrequent Access is the lower price. For example, at the time of writing, the price
per GB of stored logs for the Standard tier in the eu-central-1 (Frankfurt) region is $0.63 per
GB, while the Infrequent Access tier costs only $0.315 per GB.

This makes the Infrequent Access tier ideal for any log groups where you do not require the more
advanced features. However, especially when considering long-term storage of logs, for example, for
compliance audits, it can be cheaper to export them to S3, a feature only available with the Standard
storage class.

Note

At the time of writing, it is not possible to change the log class of a log group after its creation.

« For an up-to-date comparison table of which CloudWatch features are supported by which storage
class, you can follow this link: https://docs.aws.amazon. com/AmazonCloudWatch/
latest/logs/CloudWatch Logs Log Classes.html#Log Class Features.

o And for a pricing comparison, you can check the official pricing table here: https: //aws.
amazon.com/cloudwatch/pricing/

« With the theory of log groups covered, let’s go ahead and create one.

Creating a log group in CloudWatch

In this section, we will create a new log group in CloudWatch. Later on in the chapter, we will use the
CloudWatch agent to send our logs to the newly created log group.

For creating the log group, follow these steps:

1. Navigate to the CloudWatch console by either searching for CloudWatch in the AWS Console
or by using this link: ht tps: //console. aws.amazon. com/cloudwatch.

2. In the left-hand menu, select Log groups under Logs.

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CloudWatch_Logs_Log_Classes.html#Log_Class_Features
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CloudWatch_Logs_Log_Classes.html#Log_Class_Features
https://aws.amazon.com/cloudwatch/pricing/
https://aws.amazon.com/cloudwatch/pricing/
https://console.aws.amazon.com/cloudwatch

An introduction to CloudWatch for logs

CloudWatch <

Favorites and recents 4

Dashboards
b Alarms &A1 @1 Oo
¥ Logs

Log Anomalies

Live Tail

Contributer Insights

» Metrics

Figure 9.3 — Log groups in the menu

3. On the overview page, you will see a list of all your existing log groups. By default, you can have
up to 1 million log groups. At the top right, click the Create log group button.

Log groups (147) @) Coeom =) (Tview i Logr o om—
iy deTauls, we ol 0ad up 1o 10000 log groups

(& 9 9POUDS B ry pref search

| (O] Exnet muteh 1203 > | @

Log group w | togclass. v | Anomalyd. ¥ | Cataprotection ¥ | Sensitvedataco.. ¥ | Resention ¥ | Mot filzars v | Comribator insig...

Figure 9.4 — Button to create a new log group in the log group overview page

1. Inthe Create log group wizard, we need to set a name, retention period, and log class for our

new log group.

* For the Log group name, we will use /ServerLogs.

* Retention is set to 1 week (7 days), so logs older than one week will be deleted.

* Log class is set to Standard.

199

200 Centralized Logging and Monitoring with Amazon CloudWatch

* The KMS key ARN is left empty. We could provide the ARN of a KMS key here to specify
a customer-managed key that will be used for encrypting the log files.

Create log group

Log group details o

(@ Cloudwatch Logs offers two log classes: Standard and Infrequent Access. Learn more about the features
offered by each log class. [%

Log group name

[/ServerLogs]

Retention setting

[1 week (7 days) v]

Log class | Info

[Standard v]

KMS key ARN - optional

[]

Figure 9.5 - Filled out form to create a new log group

2. Click the Create button at the bottom right to create your new log group.

3. In the search bar, type the name of your newly created log group. In this example, the name
was /ServerLogs. You should find the new log group.

Fa = . prom——— e ———
Log groups (147) @ (Caevions v) views Inaigh g | (el G
By cbefaitt, we only lead up o 10000 log grouss
(& e X | vmath 1 Exac mateh T @
E' Log group - Log class ¥ | Anomalyd.. ¥ Data protection v Sensitive dataco... ¥ | Retestion ¥ | sherric Miters ¥ | Contributor inssg..
O fsevariag Standard Configure = = 1 ek

Figure 9.6 — Searching for the new log group

An introduction to CloudWatch for logs

4. By clicking on the name of the log group, you will be taken to the overview page shown in the
following screenshot:

JServerLogs (natioms w) (" viey igees) swrtvaitiog) (Surehs s group
¥ Log group details
Lo ctass infs Baatric ilters Data protection
Standard o
ARN ‘Subscription fiters Semsitive data count
G am 1151 P/] o
Creatian time ‘contributoe Insights rules Fleld indexes.
& manshs aga Configure
Retention KMS key 1D Transformer
1 wesk Canfigurn
Stored bytes Anamaly detection
Configure
Log streams Tags Anomaly detaction Matric filters Subscription filters Contributor Insights. Data protection Fiald indexes - new Transformer - new
-~ (o o 1 Comatetog stresm) { Sewrch ali bog stresms)
Log streams (0] |\(;:/| {_ createton) seareh alt oy)
[Exact mateh Show expired () infa 1 (]
Log stream % | Last event time -

Figure 9.7 — Overview page of the new log group

In the overview of your new log group, you can find basic information such as the log class, retention
period, and the amount of bytes currently stored within the log group.

At the bottom of the log group, you will find the list of log streams. Each log group is made up of
log streams. A log stream bundles all log events from one source, for example, an EC2 instance or a
Lambda function.

(7
Additional Information
You may wonder why the log group of a single Lambda function has multiple log streams
attached to it. This is because each version of the Lambda function gets its own log stream.

Every time you change the source code of your Lambda function, it will create a new version
that gets its own new log stream in the log group of the Lambda function.
. J

With our new log group created, we now need a source of logs to send to the group.

We have previously discussed the value of having all logs from our application, the underlying system
logs, and the logs from all AWS services like RDS that make up our application, in one place. To get
the logs from an EC2 instance, we will next use and configure the CloudWatch agent to stream the
logs to CloudWatch.

201

202

Centralized Logging and Monitoring with Amazon CloudWatch

Monitoring custom metrics and sending log files using
CloudWatch Agent

The agent we need to install in our operating system is called the CloudWatch agent. It is available
for a variety of modern operating systems, from most Linux distributions such as Ubuntu and Red
Hat Enterprise Linux to macOS X and Windows. You can find a list of all operating systems that are
supported in the table at this URL, along with the links to download the CloudWatch agent for each
one: https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
download-cloudwatch-agent-commandline.html.

In this chapter, we'll see the steps needed to install the CloudWatch agent on our instance.

(R
Note

To follow the steps described in this section, you will need a running EC2 instance that you
can connect to.

You can follow the steps in Chapter 4 to set up such an EC2 instance. Note that the following
instructions assume that you are using Amazon Linux 2 as your operating system. Other Linux
distributions (such as Ubuntu) might have a different default username.

- J

To get started, follow these steps:

1. Login to your EC2 instance by running the following command in your terminal. You'll need
to fill in the details such as the path to your key file or the IP of your instance:

ssh -i <path to key file> ec2-user@<server public ip>

2. Download the installer for the CloudWatch agent. The URL depends on the operating system you
are using and the Region in which your instance is running. You can find the list of download
links in the URL shared in the preceding paragraphs. AWS offers two different download
links: a general one and a Region-specific one. Using the Region-specific link will potentially
speed up the download since the file will be retrieved from the same Region. Remember to
replace the red Region placeholders with the AWS Region you are running your instance in,
for example, eu-central-1.

In this example, we'll be using the general download link for Amazon Linux 2023 and Amazon
Linux 2:

wget https://amazoncloudwatch-agent.s3.amazonaws.com/amazon
linux/amd64/latest/amazon-cloudwatch-agent.rpm

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/download-cloudwatch-agent-commandline.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/download-cloudwatch-agent-commandline.html

An introduction to CloudWatch for logs

3.

4.

After the download is finished, we can start the installation of the package by using the
following command:

sudo rpm -ivh amazon-cloudwatch-agent.rpm

The output of this command should look similar to the following:

Verifying...
###HHHAHF S HAH A H RS [100%]

Preparing...
###HHHAH S H AR [100%]

create group cwagent, result: 0
create user cwagent, result: 0
Updating / installing...

l:amazon-cloudwatch-agent-1.300044.
S #AH AR S [100%]

With the CloudWatch agent installed, we are almost ready to configure it to collect metrics. However,
we haven't given our instance the correct permissions yet to transmit metrics. We will do this by creating
an IAM role that has the correct permissions attached. This role will then be attached to our instance.

To do this, follow these steps:

1.

2.

(@) Select trusted entlty

Navigate to IAM by either searching for it in the AWS console or by using the following link:
https://us-east-1.console.aws.amazon.com/iam/home#/home. In the
navigation bar on the left, click Roles and then Create role.

For Trusted entity type (as shown in the following figure), select AWS service.

Select trusted entity v+

Trusted entity type

Use case
A AN service Uke B2, Lamiads, ar oehers to derferm ackins i by secount.

Cance M

Figure 9.8 - Setting the trusted entity type for our new role

203

204 Centralized Logging and Monitoring with Amazon CloudWatch

3. Under Use case, in the dropdown, select EC2 and then select the radio button next to EC2, as
shown in the following screenshot. We do this since this role will be attached to an EC2 instance.

Use case
Alkow an AWS service like BC2, Lambda, or others 1o perform actions in this acceunt,

Service or use case

[(ec2 v

Chaose a use case for the specified service,
Use case

Figure 9.9 - Selection of our use case for this newly created role.

4. Click Next.

5. Under Permissions policies, search for CloudWatchAgentServer. You should find an
AWS-managed policy with the name CloudWatchAgentServerPolicy. Click the checkmark
next to the name, as shown in the following figure:

Add permissions ..

Permissions policies (1/1064) T)]
Choase one o7 maore poticies to attach ta your new role
Filiter by Type

0, CloudWatehagent | | antypes v | 2 matohes 1]

[-] Palicy name [- Type * | Description

L o] ClaudWatchAgentadminPalicy AWS managed Full permissians required to e Amaz....
'z g
|8 B CosdwatchagentServerfolicy AWS managed Permissions required to use Amazontl.. |
L = J

* Set permissions boundary - optional

Cancel C Previus 31 | Newt

Figure 9.10 - Selection of our permissions policy

6. Click Next.

7. Under Role details, you need to give your new role a name, such as Ec2InstancePolicy,
as shown in the following screenshot:

An introduction to CloudWatch for logs

Role details

Rale name
Entar & meaeingfisl san

| Eczmstanceraticy

[Description

| Allowas EC2 instances to call AWS services on your hehialf.

Figure 9.11 - Naming of our new role

8. Below the name and description of our new role, you'll find the trust policy. Recall that this
policy tells AWS who - or in this case, what service — can assume this role. Your trust policy
should look similar to the following, which instructs IAM to allow the ec2 . amazonaws .
com service principal (which is the service principal behind the EC2 service) to call the
sts:AssumeRole action, and thus allows it to assume this newly created role:

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"sts:AssumeRole"
1,
"Principal": {
"Service": [
"ec2.amazonaws.com"
]
}
}
]
}

9. The next part contains the overview of permissions. In our case, as shown in the next screenshot,
this only contains the AWS-managed permission called CloudWatchAgentServerPolicy.

Step 2: Add permissions £dit)
Permissions policy summary

Policy name [3 & | Type v | Attachedas v

CloudWatchfgentServerfiolicy A managed Permissians palicy

Figure 9.12 - Overview of the permissions policies attached to our role.

10. Click Create role at the bottom of the page.

205

206 Centralized Logging and Monitoring with Amazon CloudWatch

11. With the new role created, we can attach it to our instance. To do so, go back to the details page
of your EC2 instance. Here, click Actions and then select Security and Modify IAM role, as
shown in the following screenshot:

@(Connect)(Instance state ¥) (Actions &)

Connect
Private IPv4 addresses Manage instance state
0 10.04.111
Instance settings >
Public IPv4 DNS Networking >
I0) ec2-52-59-96-200 au_ronteal 1 romnutg
Change security groups Security |]]
Image and templates >
Modify IAM role] Monitor and troubleshoot »

Elastic IP addresses

AWS Compute Optimizer finding
(@ Opt-in to AWS Compute Optimizer for recommendations. | Learn more [#

Auto Scaling Group name
IO asg-test [2

Managed
false

Figure 9.13 - Steps needed to attach an IAM role to this instance.

12. In the following dropdown, select the previously created role, then click Update IAM role, as
shown in the following screenshot:

Modify 1AM role i

Artach an LM reke te your Instance

Instance ID
I i-0amatag 125185
1AM role
okt an AP rabi 5 STAER 2 st madartti e ivueln o e e s e crmtiad a1 2w e s il ey 1l that are eueely abtechid b ponr i anes

[EclinstanceFalicy v @ Create new 1M role (3

cancel

Figure 9.14 - Selection of our previously created IAM role

We now have attached a role with the necessary permissions on to our EC2 instance. Next, we can
configure the CloudWatch agent to start pushing metrics and logs from our instance.

This is handled by a configuration file on the instance. AWS offers a configuration wizard that we can
run to generate the configuration for our instance. Log back on to the EC2 instance to which you have
previously attached the role and then follow these steps:

An introduction to CloudWatch for logs 207

1. Run the following command to start the Amazon CloudWatch agent configuration wizard:

sudo /opt/aws/amazon-cloudwatch-agent/bin/amazon-cloudwatch-
agent-config-wizard

2. In the dialog, we are first asked where the agent is being run. In this case, our OS is Linux, so
choice 1:

On which OS are you planning to use the agent?
1. linux

2. windows

3. darwin

default choice: [1]:

1

3. Since this instance is running in EC2, for the selection of where the instances run, we'll select
option 1, which is EC2:

Are you using EC2 or On-Premises hosts?
1. EC2

2. On-Premises

default choice: [1]:

1

4. 'Welll then choose the default options for the following selections, so running the agent as the
cwagent user, enable StatsD daemon, and have it listen on port 8125 with a collection
interval of 10s (option 1) and an aggregation interval of 60s (option 4):

Do you want to turn on StatsD daemon?

1. yes

2. no

default choice: [1]:
1

Which port do you want StatsD daemon to listen to?
default choice: [8125]

8125

What is the collect interval for StatsD daemon?

1. 10s

2. 30s

3. 60s

default choice: [1]:

1

What is the aggregation interval for metrics collected by StatsD
daemon?

1. Do not aggregate
2. 10s

208 Centralized Logging and Monitoring with Amazon CloudWatch

3. 30s

4. 60s

default choice: [4]:
4

5. Next, we'll prevent the collection of metrics from CollectD. CollectD is an agent that can collect
application metrics but it needs to be installed in order for it to work. Since we are focused on
the instance metrics from CloudWatch agents, we'll not use this feature here:

Do you want to monitor metrics from CollectD? WARNING: CollectD
must be installed or the Agent will fail to start

1. yes

2. no

default choice: [1]:
2

6. 'We'll then enable host-level metrics, monitor CPU metrics per core, add EC2 dimensions such
as ImageId or InstanceId to the metrics where this information is available, and aggregate
metrics based on InstanceId:

Do you want to monitor any host metrics? e.g. CPU, memory, etc.

1. yes

2. no

default choice: [1]:

1

Do you want to monitor cpu metrics per core?
1. yes

2. no

default choice: [1]:

1

Do you want to add ec2 dimensions (ImagelId, Instanceld,
InstanceType, AutoScalingGroupName) into all of your metrics if
the info is available?

1. yes

2. no

default choice: [1]:

1

Do you want to aggregate ec2 dimensions (InstancelId)?
1. yes

2. no

default choice: [1]:
1

An introduction to CloudWatch for logs

With the agent, we can increase the resolution of our metrics to a sub-minute interval. This
can be useful when dealing with systems that have very spiky load patterns. In this case, the
default 6 0s interval might not be sufficient to quickly catch a load increase. For this example,
we'll keep the default value of a 60-second interval:

Would you like to collect your metrics at high resolution
(sub-minute resolution)? This enables sub-minute resolution for
all metrics, but you can customize for specific metrics in the
output json file.

1. 1s

2. 10s

3. 30s

4. 60s

default choice: [4]:
4

For the default metrics configuration, we'll select Advanced (Option 3). This will generate our
configuration file in JSON format. The configuration shows the metrics we are now collecting.
Take a look at the highlighted part in the following example, which highlights the memory
metrics we are publishing as mem used_percent. Notice how each measurement has its
own interval. So, you could also gather the memory usage every 10 seconds while gathering
disk metrics only every 120 seconds. In the following page, the output of other dimensions
(such as disk I/O or CPU) is left out for brevity.

Which default metrics config do you want?
1. Basic

2. Standard

3. Advanced

4. None
default choice: [1]:
3

The agent part shows the configurations we have selected for our agent. In this case, the 60
second metrics collection interval, as well as the user that the agent should run as (cwagent
in this case).

Current config as follows:

"agent": {
"metrics_ collection interval": 60,
"run_as user": '"cwagent"

b

209

210 Centralized Logging and Monitoring with Amazon CloudWatch

10. We then find the metrics block. This defines all the metrics that we have configured before.
The aggregated dimensions will later, in the CloudWatch interface, allow us to aggregate the
values by them. For example, we can aggregate the memory usage for all of the instances.

"metrics": {
"aggregation dimensions": [
[
"InstanceId"
]
1,
"append dimensions": {

"AutoScalingGroupName" :
"${aws:AutoScalingGroupName}",

"ImageId": "${aws:ImageId}",
"InstanceId": "${aws:InstanceId}",
"InstanceType": "${aws:InstanceType}"

b

11. The next block defines the metrics we have collected. As previously mentioned, we have
abbreviated some metrics for brevity. As you can see, each metric, mem in this case, has a list
of measurements. These measurements are what is actually measured. In this example, for the
memory metric, we are measuring the percentage of memory used. You can also see that each
metric has its own collection interval. This means that we could collect the mem used percent
at a 5-second interval while collecting the tcp_wait time (part of the netstat metric
shown next) measurement at a 60-second interval. This gives us more flexibility when dealing
with metrics that can change rapidly (like network load or memory usage) and metrics that
usually only change gradually (like disk usage on a system whose primary purpose is not storage).

"metrics collected": {
// BAbbreviated for brevity
"mem": {

"measurement": [
"mem used percent"
]I
"metrics collection interval": 60
"netstat": {

"measurement": [

An introduction to CloudWatch for logs

"tcp_established",
"tcp time wait"
1,
"metrics_collection_interval": 60
b

// Left out for brevity

}

12. Select that you are satisfied with the preceding configuration (Option 1)

Are you satisfied with the above config? Note: it can be
manually customized after the wizard completes to add additional

items.
1. yes
2. no

default choice: [1]:
1

13. When asked about the existing CloudWatch agent configuration, select the no option since we
are setting up the CloudWatch agent for the first time:

Do you have any existing CloudWatch Log Agent (http://docs.aws.
amazon.com/AmazonCloudWatch/latest/logs/AgentReference.html)
configuration file to import for migration?

1. yes

2. no

default choice: [2]:
2

14. With the metrics done, we can now configure our agent to send log files. Select option 1.

Do you want to monitor any log files?

1. yes

2. no

default choice: [1]:
1

15. Next, we define the path to the log files. Before we define it, let’s take a quick excursion into
how we can specify the path to our log files.

212 Centralized Logging and Monitoring with Amazon CloudWatch

16.

17.

18.

19.

CloudWatch agent supports wildcards, so we can use /var/messages/* . log to indicate
all files ending in . 1og in the directory /var/messages. In addition, it also supports **
or a super asterisk. This can be used to match all files in a directory tree. A directory tree is all
the files in a directory, as well as all subdirectories. Take a directory structure like the following
one as an example. If we point the CloudWatch agent to collect all logs in /var/logs/*.
log, it will only collect the app . 1og file. If we instead use the super asterisk and instruct the
agent to collect all logs in /var/logs/** . log, it will go through all subdirectories, such as
httpd in this example, and also find the access . 1og file that is under the ht tpd/ directory.

var/

 logs/

| F app.log

| F httpd/

| | | access.log

For our path, we define /var/logs/**.1log.
Log file path:
/var/logs/**.log
Next, we need to define our log group name. In our example, this will be the log group we

previously created, which is /ServerLogs.

Log group name:
default choice: [messages]
/ServerLogs

For the log group class, we define the same class we used when creating the log group, so
STANDARD (choice 1).

Log group class:

1. STANDARD

2. INFREQUENT ACCESS
default choice: [1]:
1

Next, we need to define the name of our log stream. As previously mentioned, the log stream
should group logs that come from the same source, so we will usually define a name that
uniquely identifies this EC2 instance.

To do this, we have a few variables available to us:

* {instance 1id} isthe ID of our instance

» {hostname} retrieves the hostname from EC2 metadata

* {local hostname} uses the locally configured network hostname

* {ip_address} is the IP address of our instance

An introduction to CloudWatch for logs

For our example, we'll use the default instance id.

Log stream name:
default choice: [{instance id}]

20. Next, we can configure our log group retention and set it to the same value we used when

21.

22,

23.

setting up the log group (7 days, or choice 5).

Log Group Retention in days

1. -1
2, 4
3. 3
4. 5
5. 7

// Other options left out for brevity
default choice: [1]:
5

We then decline to specify any other log files to monitor by selecting choice 2, no.

Do you want to specify any additional log files to monitor?

1. yes

2. no

default choice: [1]:
2

We are then asked to configure X-Ray traces. X-Ray is beyond the scope of this book, so we
select option 2, no, as our choice.

Do you want the CloudWatch agent to also retrieve X-ray traces?

1. yes

2. no

default choice: [1]:
2

The configuration wizard will now repeat the entire configuration file (which we have omitted
here for brevity) and ask you to store this file in Parameter Store. This can be useful when sharing
a configuration between a group of instances. For now, select no (Option 2). The program then
exits and a configuration file is created:

Please check the above content of the config.

The config file is also located at /opt/aws/amazon-cloudwatch-
agent/bin/config.json.

Edit it manually if needed.

Do you want to store the config in the SSM parameter store?
1. yes

2. no

213

214 Centralized Logging and Monitoring with Amazon CloudWatch

default choice: [1]:
2
Program exits now.

24. To validate that everything worked, we can use the CloudWatch agent control to fetch the

25.

configuration. This verifies the configuration and creates a symlink for the CloudWatch
agent service:

sudo /opt/aws/amazon-cloudwatch-agent/bin/amazon-cloudwatch-
agent-ctl -a fetch-config -m ec2 -c¢ file:/opt/aws/amazon-
cloudwatch-agent/bin/config.json -s

The output should look similar to the following. You should see a message indicating that the
schema of our configuration file is valid and then that the validation has succeeded. The bold
text in the following code snippet highlights the parts to pay attention to in the output.

***k*xx*x processing amazon-cloudwatch-agent **xx*x*
// Omitted for brevity

Successfully fetched the config and saved in /opt/aws/amazon-
cloudwatch-agent/etc/amazon-cloudwatch-agent.d/file config.json.
tmp

Start configuration validation...

2024/09/22 19:54:59 Reading json config file path: /opt/aws/
amazon-cloudwatch-agent/etc/amazon-cloudwatch-agent.d/file
config.json.tmp

2024/09/22 19:54:59 I! Valid Json input schema.
// Output ommited for brevity

2024/09/22 19:54:59 Configuration validation first phase
succeeded

I! Detecting run_as_user...

// Ommited for brevity

Configuration validation second phase succeeded
Configuration validation succeeded
amazon-cloudwatch-agent has already been stopped

Created symlink /etc/systemd/system/multi-user.target.wants/
amazon-cloudwatch-agent.service » /etc/systemd/system/amazon-
cloudwatch-agent.service.

26. Restart the CloudWatch agent to load the new configuration by using the following command.

This command has no output.

sudo systemctl restart amazon-cloudwatch-agent.service

An introduction to CloudWatch for logs 215

27. You can verify that everything worked and that the agent was reloaded successfully by running
the following command. The output should show Active: active (running).

sudo systemctl status amazon-cloudwatch-agent.service

With the agent configured to send all of our logs to CloudWatch, you can navigate back to the
log group in the instance and watch the logs from your server flow in.

Additional Information

In the previous configuration, as well as in the menu of the CloudWatch section in the AWS
Console, we have seen the mention of X-Ray. X-Ray is an AWS service that allows for the
tracing of requests in a microservices architecture. When dealing with an architecture like the
one shown at the beginning of the chapter in Figure 10.1, it can be hard to correlate the logs
of a user request across all systems. X-Ray, and other distributed tracing tools, solve this by
attaching a unique identifier to a request. This unique ID is usually called a trace ID. As the
request is forwarded from one service, for example, from the front-end service to the Message
Service and back, that unique identifier is preserved and can be added to any logs. This way;,
if a user provides the trace ID, we can quickly search for all logs related to that trace across all
our systems.

28. To verify that the CloudWatch agent is running successfully, run the following command:

sudo systemctl amazon-cloudwatch-agent.service

The output should look similar to the following:

® amazon-cloudwatch-agent.service - Amazon CloudWatch Agent

Loaded: loaded (/etc/systemd/system/amazon-cloudwatch-
agent .service; enabls>

Active: active (running) since Sun 2024-09-22 19:55:00 UTC;
lmin 50s ago

Main PID: 5097 (amazon-cloudwat)
Tasks: 6 (limit: 1112)
Memory: 23.6M
CPU: 393ms
CGroup: /system.slice/amazon-cloudwatch-agent.service

L5097 /opt/aws/amazon-cloudwatch-agent/bin/amazon-
cloudwatch-agens>

// Omitted for brevity

216

Centralized Logging and Monitoring with Amazon CloudWatch

We can now verify that everything worked by navigating back to our CloudWatch Metrics overview.
In the following figure, you can see a new custom namespace called CWAgent, which contains all the

metric

s we have defined in our configuration:

Metrics (909) info (P Alarm recommendations @ Download alarm code Create alarm

Frankfus

v Q, search for any metric, dimension, resource id or account Id

¥ Custom namespaces

CWAgent

57

Figure 9.15 - Overview of our newly available custom metrics namespace

We can now also go to the logs part of the console and verify that our log group exists and after some

time (i

t can take a few minutes for logs to show up) you should see some logs here.

With our custom metrics now available we’ll next look into notifications and alarming. To do so we'll
first introduce another service, Simple Notification Service (SNS).

Introduction to SNS

SNSis

a service that lets you send notifications via email, text message, or webhook, based on events

or via an API call. In SNS, you have three main components:

Topic: A topic is used to separate messages. You could, for example, have an SNS topic for
infrastructure alerts.

Publisher: A publisher sends a message to a topic. Many AWS services can act as publishers
for SN topics out of the box or you can use Lambda functions to send messages.

Consumer: A consumer receives all messages that are published to a topic. Consumers can be
humans who are notified via email or text message, as well as automations that are invoked via
a webhook or by invoking a Lambda function.

Let’s start by creating a new topic that will be used to notify us of change events. To do so, follow

these s

1.

teps:

Go to the SNS service in the AWS console by searching for it or by using the following
link: https://eu-central-1.console.aws.amazon.com/sns/v3/
home?region=eu-central-1#/homepage.

In the left navigation bar, select Topics and then click Create topics.

We first need to select the type of SNS topic we want to create. At the time of writing, there
are two different types of topics: FIFO (first-in, first-out) and Standard. Select Standard and

Introduction to SNS 217

give the topic a name (InfrastructureEvents, in this example) and an optional display
name, as shown in the following screenshot:

Details

Type Info

Topic type cannot be modified after topic is created

() FIFQ (first-in, first-out) © Standard

 Strictly-preserved message ordering * Best-effort message ordering
= Exactly-once message delivery = At-least once message delivery
« High throughput, up to 300 publishes/sacond « Highest throughput in publishes/second
« Subscription protocols: 5Q5 Subscription protocals: SQS, Lambda, HTTP, SMS,

email, mobile application endpoints

Name

| InfrastructureEvents] |

Maximum 256 characters. Can include alphanumeric characters, hyphens (-} and underscores ().

Display name - optional info
To use this topic with SMS subscriptions, enter a display name. Only the first 10 characters are displayed in an SMS message

| Infrastructure Events Topic |

Maximum 100 characters.

Figure 9.16 — Information needed to create a new SNS topic

Note

FIFO topics preserve the ordering of messages and ensure that a message will be delivered
only once. This type of topic can be useful for use cases where the ordering and exactly-once
delivery of a message plays an important role. Think, for example, about a banking application
that handles withdrawal requests from an ATM. Wed all prefer the request to be handled in
order so that we can use money that has been deposited shortly before and also that withdrawals
happen only exactly once.

The downside of FIFO topics is their reduced throughput. Standard topics in us-east -1 can
support up to 30,000 messages per second while FIFO topics can only handle 3,000 messages
per second. You can learn more about these limitations (and also see the numbers for your
preferred Region) here: ht tps://docs.aws.amazon.com/general/latest/gr/
sns.html.

In addition, at the time of writing in September 2024, FIFO topics only support Simple Queue
Service (SQS) as the target for sending notifications.

https://docs.aws.amazon.com/general/latest/gr/sns.html
https://docs.aws.amazon.com/general/latest/gr/sns.html

218 Centralized Logging and Monitoring with Amazon CloudWatch

4. Once we have the topic created, we can create a new subscription. This is how we associate a

new consumer with our topic.

To do so, on the overview page of your topic, select the Create subscription button.

5. When creating a subscription, we'll need to select a protocol. In this case, we want email
notifications, and we'll thus select Email for Protocol. For Endpoint, enter a valid email address
of yours. Be aware that you'll have to confirm the subscription. See the following screenshot

for an example configuration:

Create subscription

Details

Topic ARN

‘ Q. amn:aws:sns:eu-central-1: BB 1 frastructureEvents

Protocol
The type of endpoint to subscribe

Email

Endpoint
An email address that can receive natifications from Amazon SNS.

- —

I

(@) After your subscription Is created, you must confirm it. info

Figure 9.17 — Configuration for our new subscription

6. Click the Create subscription button at the bottom of the page. You'll need to check your

emails for one that contains a confirmation link to open.

With the topic created and our email subscription activated, let’s create an alert that gets triggered

from our metrics and sends us an email.

Introduction to SNS

Creating a CloudWatch metric alert that pushes a notification to

SNS

In this section, we’ll now set up a CloudWatch alarm that monitors a metric and then pushes a
notification into SNS. To do this, follow these steps:

1. Navigate to the CloudWatch service by either searching for CloudWatch in the AWS console
and then selecting All Alarms in the left navigation or going to the following link: https://
eu-central-1.console.aws.amazon.com/cloudwatch/home?region=eu-
central-1#alarmsV2.

2. This page lists all the alarms you have enabled. To create a new alarm, click the Create alarm

button on the right.

3. In the following agent, you’ll have to first select a metric. Click the Select metric button and
then choose the CWAgent namespace. You'll then see all the aggregations we have configured
in the CloudWatch agent. Select Instanceld, as shown in the following screenshot:

Metrics (57)

Q Graphwith sQL Graph search

‘ Frankfurt ¥ | All > CWAgent | Q. Search for any metric, dimension, resource id or account id

Imageld, Instanceld, InstanceType, 14 | Imageld, Instanceld, InstanceType, cpu 4

device, fstype, path

Instanceld 15

name

Imageld, Instanceld, InstanceType, 20 Imageld, Instanceld, InstanceType 4

Figure 9.18 - Selecting the aggregation under which our metric will be selected

4. In the next table, you can find all available metrics for this instance. Find and select the

mem_used_percent metric.

-] Instance name 15/15

N Cloudwatchinstance
[CloudWatchinstance
O CloudWatchinstance

Cloudwatchinstance

A | Instanceld

[-0b2c70d2cf212...

¥ | Metric name v |

netstat_tcp_established @)

........... { Jeipiplierpdiga

CloudWatchinstance

mem_used_percent @

CloudWatchinstance

swap_used_percent ()

Figure 9.19 — Selection of the metric used for this alarm

219

220 Centralized Logging and Monitoring with Amazon CloudWatch

5. Next, we configure the condition. Under Metric, you can select the statistical function (in
this example, Average) you want applied to the metric. There are other functions, such as p90
available. You can also configure the period over which the function will be applied. With the
configuration shown in the following screenshot, the average will be taken over a 5-minute window:

Metric

Graph

This alarm will trigger when the blue line goes above the red line for 1 datapoints within 5 minutes.

52 Namespace

Percent CWAgent

14.6
Metric name

| mem_used_percent |

14.5 Instanceld

| -0b2c70d2cf212b2a8 |

14.4 Instance name
19:00 20:00 21:00 CloudWatchinstance

@ mem_used_percent
Statistic

| Q, Average b4 |

Period

| 5 minutes v |

Figure 9.20 — Configuration for the metric in our alert

Introduction to SNS

6. Next, we can define the condition that needs to be met for our alert to trigger. Here, we define
a Static threshold type. This allows us to configure a simple threshold number. We then define
that this alert should trigger when our value is greater than our threshold value of 14. Note that
this threshold is set deliberately low so that we can immediately see the alarm being triggered.
Under Additional configuration, we can set the number of datapoints that need to be in breach
in order for the alert to be triggered. In this example, we will keep this at 1 out of 1:

Conditions
Threshold type
© static) Anomaly detection
Use a value as a threshold Use a band as a threshaold

Whenever mem_used_percent is...
Define the alarm condition.

© Greater () Greater/Equal) Lower/Equal) Lower
> threshold »= threshold <= threshold < threshald

than...
Define the threshold value.

14 <

Must be a number

¥ Additional configuration

Datapoints to alarm
Define the number of datapoints within the evaluation period that must be breaching to cause the alarm to go to ALARM state.

Missing data treatment
How to treat missing data when evaluating the alarm.

‘ Treat missing data as missing v

Figure 9.21 — Conditions for our threshold

221

222 Centralized Logging and Monitoring with Amazon CloudWatch

7. Next, we define where our data is sent. We select to trigger the notification when the status
changes to In alarm (so when the metric is outside of the threshold) and we then select our
previously created SNS topic.

Notification

Alarm state trigger

Define the alarm state that will trigger this action.

O Inalarm) OK) Insufficient data
The metric or expression is outside The metric or expression is within The alarm has just started or not
of the defined threshold. the defined threshold. enough data is available.

Send a notification to the following SNS topic
Define the SNS (Simple Notification Service) topic that will receive the notification.

© select an existing SNS topic
() Create new topic

() Use topic ARN to notify other accounts

Send a notification to...

| Q, InfrastructureEvents X

Only topics belonging to this account are listed here. All persons and
applications subscribed to the selected topic will receive notifications.

Email (endpoints)

I - 1 more - View in SNS Console [}

‘ Add notification ‘

Figure 9.22 - Settings for our notifications to SNS

8. Click Next and define a name for your alert, for example, M\emUsageAlert. Then, click
Create alert

Once your alarm has been triggered, you’ll receive an email containing the details of your alert.

With email alerts, we can already have the alert sent to a common mailing list that everyone on the
DevOps team is a part of. However, we can also go a step further. Most companies these days use
some sort of collaboration/chat platform. Wouldn't it be better to have all of our alerts sent to this
common platform?

Sending SNS notifications to Slack

Email is supported as a native consumer for SNS notifications. Common enterprise communications
platforms such as Slack or Microsoft Teams are not supported. So, in this example, we’ll work around
this limitation by using a Lambda function.

Introduction to SNS

In this example, we're only forwarding messages via our Lambda function. In Chapter 10, we'll
see how to take automated action upon receiving a notification.

To do this, we'll first have to create a Slack app. In order to follow this section, you’ll need a Slack
account and workspace. A free workspace/account is sufficient.

In Slack, we'll use a concept called webhooks. A webhook is a space-specific URL to which we can
send a JSON payload. This payload contains the message we want to send.

Follow these steps to set up a webhook for Slack:

1.

3.

Navigate to ht tps://api.slack.com/apps/new and select From scratch when asked
what type of app you want to create.

In the next dialog, give your app a name and select the workspace to which the messages
should be sent.

Name app & choose workspace X
App Name
[cw—alerts—fcmarderi 16]

Don't worry - you'll be able to change this later.
Pick a workspace to develop your app in:

8l .
Keep in mind that you can't change this app’s warkspace later. If you leave the

workspace, you won't be able to manage any apps you've built for it. The
workspace will control the app even if you leave the workspace.

Sign into a different workspace

By creating a Web API Application, you agree to the Slack API Terms of Service.

Figure 9.23 — Naming our app

On the overview page of your new application, select Incoming Webhooks and, at the top right,
toggle the button next to Activate Webhook to on. At the bottom of the page, you'll then find
an Add New Webhook to Workspace button. Click this button.

223

https://api.slack.com/apps/new

224

Centralized Logging and Monitoring with Amazon CloudWatch

4. You'll then be asked to select the channel to which the message will be posted. Select the channel
from the dropdown menu and click Allow.

5. With this done, you can now see the webhook URL. Copy this URL as we'll need it in our
Lambda function.

Next, we will write a small Lambda function that takes an SNS notification and forwards it to Slack.
Writing a forwarding Lambda function

With our webhook set up and ready, we can now write the Lambda function that will be invoked by
SNS, which then pushes our notifications to Slack.

Follow these steps to write the Lambda function:

1. Navigate to the Lambda console by either searching for the Lambda service in the AWS console
or by going to the following URL: https://eu-central-1.console.aws.amazon.
com/lambda/home?region=eu-central-1#/functions.

2. Click on Create function at the top right and select Author from scratch. For Basic information,
give your function a name (for example, SlackForwarder) and select the latest Python
version (at the time of writing, this is Python 3.12) as the runtime. For Architecture, select
armé64 to use the cost-efficient graviton CPUs for our runtime. Then, click Create function.

Create function ..

Chanss ane of e fallnad @ exwits your Pancrlan,

1 Cortalings image
ST 8 COMEa L age 10 deploy far your Riscn o

Mode s

Arelitucturs e
[+ FR
3 amvss

Permissions e

By eIt Larebels w1 creats st wese sthos e s pamisadons b sphaad ugs 15 Areian Ecudiatch Lags. You van eunszmiz ths didaidl ne laterwhon asding riggers

* Change default execution role

» Additional Configurations

Use acdrional configurations o set up code signing, function URL, tags, and Amazon YPL 2ccess for your function.

Figure 9.24 - Basic configuration of our Lambda function

https://eu-central-1.console.aws.amazon.com/lambda/home?region=eu-central-1#/functions
https://eu-central-1.console.aws.amazon.com/lambda/home?region=eu-central-1#/functions

Introduction to SNS

Next, we need to write the code for our Lambda function. AWS provides example Lambda
functions for many different chat applications at the following URL: https://repost.
aws/knowledge-center/sns-lambda-webhooks-chime-slack-teams.

We'll be using the code provided for the Slack integration under Example Python code snippet
for Slack and modify it. The sample snippet hard-codes the webhook URL and channel name.
In our version, these will be read from the environment variables.

Open the code source by selecting the Code tab in the Lambda console and then type the
following code. All modifications are marked in bold. We import the os package to get access
to environment variables and then pull the SLACK_WEBHOOK and SLACK_CHANNEL
environment variables. Before the definition of the handler, we then check that neither of these
two variables is None, which indicates that they have not been set properly:

import urllib3
import json
import os
http = urllib3.PoolManager ()
SLACK HOOK = os.environ.get ("SLACK WEBHOOK", None)
SLACK CHANNEL = os.environ.get ("SLACK CHANNEL", None)
if not SLACK HOOK or not SLACK CHANNEL:
raise Exception("Missing Slack hook or slack channel")
def lambda_handler (event, context) :

url = SLACK HOOK
msg = {
"channel": SLACK_CHANNEL,
"username": "WEBHOOK USERNAME",
"text": event ["Records"] [0] ["Sns"] ["Message"],
"icon emojim": "",
}

encoded msg = json.dumps (msg) .encode ("utf-8")
resp = http.request ("POST", url, body=encoded msg)
print (
{
"message": event ["Records"] [0] ["Sns"] ["Message"],
"status code": resp.status,
"response": resp.data,

225

https://repost.aws/knowledge-center/sns-lambda-webhooks-chime-slack-teams
https://repost.aws/knowledge-center/sns-lambda-webhooks-chime-slack-teams

226 Centralized Logging and Monitoring with Amazon CloudWatch

5. The following screenshot shows the source code in the editor and also highlights the Deploy
button that needs to be pressed to publish a new version of the Lambda function:

Code source s (" vpleadtiom » v

Rl CARR B b

e &R0 e & et
& lirkcia_Tunetion gy i 3 Jsazan Tip 13t Start tyslg te get supgestiurs (IESCH to eaitl

D

e

1HinL. PealFansgert |

the,

SLATK_IKOK = 35 .environ.get]”
SLATH_CHAMREL = o5, environ, get|SLACK_CHARHEL", Honel

ralse Dxcaptiant™Nissing

13 gef tuseda_handlerievent, context!
O,

s,
8155 ["Fessage” |

anraded T = fenn.dieps ey
R, PRl ST,

, brdy==nrares gl

4 TRST GURNTS [NOKS SELECTSD] -
Create nom fnst event s [Fans] [Mresagen],
3 :
@ 3 @ o sy
 EMVINGHWENT WARABLES
EO&E P A U1 0ol Speeea UTFS L6 Mo () Lends tmeutus (3

Figure 9.25 - Source code and the Deploy button for publishing a new version

6. 'We now need to set our environment variables. Click the Configuration tab and then select
Environment variables in the left navigation, as shown in the following screenshot:

Code | Test | Manitor Aliases | Versians

Gerveral canfguration Environment variables {2) T
Triggers The wnit ki Lssloww 3w GreeryPAad st with tha dafaule Lambda ssevics ki,
Pannisin S, Fird amarcoment variobles
Detinatons ey Valu
pship-i
Function UAL SLACK_CHANNEL Pship-it
| SLACK WERHNOK Wt i, clack. £ s vie sy TRNGD 1L HXBOTHWETCPRK folny ARD M ar ACO AL
Tags
VP

ADS databases
Maniteiing ani o atiens ol

Concumency and recursion
ditectinn

Azynchronous mocation
Code signing
Fils systaive:

State mochines

Figure 9.26 — Setting environment variables for our Lambda function

Introduction to SNS

7. Click Edit and then Add environment variable to set the two environment variables with the
channel name and webhook URL you previously got from Slack.

Edit environment variables

Environment variables
Yo can define emdranment varisbies as key-value pais that are acoessible from your function code, Tnese are useful to store canfguration sextings without the nsed to thangs funceion cade. Learn mere [3

Kay valug
| siack cranne Hekip-in | memew ;1
| sLAcK_WERHODK | comy | {_memove)

{{_ add emirenment varlabic

¥ Encryption configuration

Cancel

Figure 9.27 — Setting the values of our environment variables

8. Finally, we need to trigger the Lambda function from our SNS topic. Click the Add trigger
button, as shown in the following screenshot:

SlackForwarder (Cnrattie) (5 copyaan) (_actons ¥)

¥ Function overview {{_Eapart ta Intruatrusturs Comparwr) {_ Duwnload v)

T e) Ferge

ﬁ SlackForwarder

Last modified
T manths age

£ Lapers ‘.‘JI

: Fusetion ARM

{ + adddestination) L] tnmbel -1 s Sk urmarches

Fumetion URL 104

Figure 9.28 — The button to add a new trigger such as an SNS topic

9. In the dropdown, search for and select SNS as the trigger source and then select the SNS topic
we previously created.

Add trigger

Trigger configuration s

sH5 =
SR TR DN LR R

5N topic

Bahoa £ SN t0cic 0 st olae o

| 0 smiawesnsa-contal-1 I ¢ == rusture Evants % | [@

Lairinta wil A the s eassary panntsions for A0S SNS 12 invai your Lambds Panctian fram (s triggern. Laar mare [2 sbaut the Lambda pemissions maode.

Cancel

Figure 9.29 — SNS topic configuration as our trigger source

227

228

Centralized Logging and Monitoring with Amazon CloudWatch

With this, we’ll now receive notifications on Slack and via email whenever our alert is triggered.

Summary

Monitoring is a critical part of operating any type of infrastructure. With the dynamic nature of
AWS, we can use CloudWatch to proactively monitor and be alerted when our infrastructure metrics
cross a certain threshold. We got a quick overview of the important terminology and components of
CloudWatch for logging, such as log groups, log classes, retention periods, and log streams.

We then covered, based on the example of EC2, how CloudWatch can be used out of the box to monitor
metrics exposed by AWS services. Afterwards, we set up the CloudWatch agent to get more detailed
metrics from our application, as well as how we can stream the log files from our instance to AWS.

After a short introduction to SNS, we then configured our first topic that was notified when our
infrastructure triggered a custom alert. We then saw how we could use a Lambda function to forward
infrastructure alerts to Slack.

In the next chapter, we will cover another important aspect of operating in the cloud: the techniques
and services needed to build a centralized backup for our cloud-deployed solutions.

10

Centralizing
Cloud Backup Solutions

The importance of backups is well understood in the modern IT world. Whenever our IT system
is dealing with data, we must ask the question: What happens if we lose this data? Depending on
the answer, we'll choose to create a backup from our data source that enables us to restore the data.
When and what to back up is a discussion that is mainly decided by the business requirements of the
application you are operating. But the how is often a critical task when setting up the infrastructure
for a new or existing application.

This chapter will explore a few ways that backups can be implemented within the context of AWS.
We'll first discuss why we are backing up data, before going deeper into AWS Backup, a backup service
provided by AWS. In AWS Backup, we'll use Terraform to automate the creation of a backup policy
and see how we can use tags to automatically add EBS volumes to the previously created backup policy.

We'll then see how we can set up life cycle policies to store old files - such as old backups - in a cheaper
storage tier of S3 called Glacier. Finally, we are going to explore the concept of bunker accounts, which
can be useful to safeguard your backups.

In this chapter, were going to cover the following main topics:

« Introduction to the backup offerings in AWS - in particular, AWS Backup
o Automating the creation of backup plans and policies

+ Exploring bunker accounts for safeguarding our backups

So, let’s get started!

230

Centralizing Cloud Backup Solutions

Technical requirements

Before following this chapter’s tutorials, please create an AWS account for yourself. You can sign up
athttps://aws.amazon.com. A basic understanding of AWS - for example, what a service
is — will be beneficial.

You'll need a working installation and a basic understanding of Terraform when running through
the code samples.

All scripts from this chapter can be found in this book’s GitHub repository:

https://github.com/PacktPublishing/AWS-for-System-Administrators-
Second-Edition

The CiA video for this chapter can be found at https://packt.link/AkfsG

Backups in AWS

When dealing with solutions in AWS, we quite often have multiple services involved. With the topic
of backups, this can lead to some difficulty. While in the old data center world we might just take
periodic snapshot data of all our servers and call it a day, in AWS, our data is often spread across
multiple services.

Some data might be stored in a relational database in RDS, some on EBS volumes attached to a subset
of our servers, some other data stored in a NoSQL database such as DynamoDB, and some data - such
as image uploads - on an S3 bucket.

This spread of data can lead to complex backup solutions since each of these services provides its own
way of backing up data.

In EBS, we can create periodic snapshots of our volumes. S3 lets us replicate entire buckets or enable
versioning to allow us to jump back to a previous version of a file. RDS also lets us take snapshots
that can then be stored on S3.

Creating backups with AWS Backup

With the variety of backup methods available in the different services, it makes sense for there to be
a centralized service we can use to configure our backups. In AWS, this service is AWS Backup. With
this service, we can create and manage central backup plans that allow us to take backups at varying
times and across multiple types of resources from S3 buckets to EBS volumes.

https://aws.amazon.com
https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition
https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition
https://packt.link/AkfsG

Creating backups with AWS Backup

Before jumping in and creating our first backup, let’s first review some key concepts within AWS Backup:

o Vault: Every backup is stored in a vault. This vault is a container in which all our backups
are stored. You can think of a vault like a safebox into which our belongings are deposited
for safekeeping.

o Backup plan: This contains the schedule on which the backups are created, the target vault to
store the backups in, as well as the collection of resources that should be included.

» Resource: This is an AWS resource, such as an EBS volume or an S3 bucket, that should be
included in a backup job. Resources can be included in a backup plan by using resource selections.
A resource selection defines a condition - for example, a resource with a certain tag attached
to it. If a resource matches this condition, it will be automatically included in the backup plan.

« Backup job: An asynchronous job that performs the actual backup operation.

A note on storage

AWS Backup uses incremental backups. This means that only for the first run on a resource will
a full copy be performed. Afterward, only the incremental changes to the resource are stored.
This allows us to make frequent backups while keeping the cost of storage low.

AWS Backup - at the time of writing in May 2025 - supports Amazon S3, Amazon EBS, Amazon
EFS, Amazon RDS, Amazon DynamoDB, and many more services and their resources for backup.
To get a complete list of services and resources that are supported, you can use the following
link: https://docs.aws.amazon.com/aws-backup/latest/devguide/whatisbackup.
html#supported-resources.

Automating the creation of backups with Terraform and tags

We have seen the core components of the AWS Backup service. But how can we automate the creation
of backups? In this section, we are going to first use Terraform to create a new backup vault and backup
plan. The backup plan will contain two backup rules that create a daily and a weekly backup - each
of them with different retention periods. Together with tags, we can thus automate the creation of
backups for our resources.

As a test, we'll then use Terraform to create a new EBS volume with the corresponding tags to test
our backup policy.

231

https://docs.aws.amazon.com/aws-backup/latest/devguide/whatisbackup.html#supported-resources
https://docs.aws.amazon.com/aws-backup/latest/devguide/whatisbackup.html#supported-resources

232 Centralizing Cloud Backup Solutions

To create a new backup vault and policy in Terraform, follow these steps:

1. Create a new directory called backup plans and navigate into it using the following commands:

mkdir backup plans
cd backup plans

2. In the new directory, create a new file called main. t f and open it with a text editor such as
Notepad++ or Visual Studio Code.

3. Inthe file, we are going to first define the provider block that tells Terraform what Region to use.
In this example, we are going to create the provider to use the eu-central-1 (Frankfurt)
Region. Remember which Region you selected here when later checking for the backup vault
and plans in the console:

provider "aws" {
region = "eu-central-1"

}

4. Next, we can create a new backup vault. We are going to give it the name t £ -backup-vault:

resource "aws backup vault" "backup vault"
name = "tf-backup-vault"

}

5. With the vault in place, we can start with the creation of our backup plan. We'll start by giving
it a name - prod-ebs-backups, in this case. Ideally, your names should be chosen such
that they explain what this backup plan (or any other resource for that matter) does:

resource "aws_backup plan" "prod ebs backups" {
name = "prod-ebs-backups"

6. Next, we define our rule. A rule is composed of a name, for example, daily ebs backup
rule. We also need to define a target vault - identified by the vault’s name and a schedule.
Schedules in AWS Backups are written using the syntax for cron jobs. In this example, we are
going to create a backup at 3 a.m. UTC every day. The corresponding cron syntax is cron (0
3 ? * * *) Since the size of these backups can accumulate, we also define a life cycle policy
that will delete our daily backups after seven days:

rule {
rule name

"daily ebs backup rule"
target_vault_ name

aws_backup vault.backup vault.name
"cron(0 3 ? * * *)n

schedule
lifecycle {
delete after = 7

}

Creating backups with AWS Backup

7.

We'll do a similar rule for our weekly EBS backups. Notice how the life cycle has changed to delete
these backups after 30 days instead of 7. Also, the cron expression for the schedule has changed:

rule {
rule name

"weekly ebs backup rule"
target vault name = aws backup vault.backup vault.name

schedule "cron(0 3 ? * 1 *)"

lifecycle ({
delete after = 30
}
}

With our rules created and our backup plan complete, we need to allow the AWS Backup
service to access resources in our account. To do this, we first need to create a new role that
allows the backup . amazonaws . com service principal to assume our newly created role:

resource "aws iam role" "backup role" {
name = "aws-backup-service-role"
assume_role policy = jsonencode ({
Version = "2012-10-17"
Statement = [
{
Action = "sts:AssumeRole"
Effect = "Allow"
Principal = {
Service = "backup.amazonaws.com"

]
H
}

So far, AWS Backup can access (or assume) this role - but the role itself does not have any
rights to do anything, such as accessing our EBS volumes to create the backups. To allow
this, we need to attach an IAM policy to the role. In this example, we are going to rely on the
AWS-managed policy called AWSBackupServiceRolePolicyForBackup. To do this
in Terraform, we are using an IAM role policy attachment resource that references the ARN
of the AWS-managed policy and our previously created role name:

resource "aws iam role policy attachment" "backup policy" {

policy arn = "arn:aws:iam::aws:policy/service-role/
AWSBackupServiceRolePolicyForBackup"

role = aws_iam role.backup role.name

233

234

Centralizing Cloud Backup Solutions

Additional information

If you want to have a look at what kind of access this managed policy has, you can find the JSON
policy document at the following link: https://docs . aws.amazon. com/aws-managed-
policy/latest/reference/AWSBackupServiceRolePolicyForBackup.html.

10. With our backup plan configured, we can now create the new vault and backup policy. To do
this, we first need to initialize the Terraform working directory using the init command.
Your output should look like the following:

terraform init
Initializing the backend...
Initializing provider plugins...

- Reusing previous version of hashicorp/aws from the dependency
lock file

- Using previously-installed hashicorp/aws v5.73.0
Terraform has been successfully initialized!

11. Next, apply the changes using terraform apply. Terraform will show you the resources
it plans to create. You should recognize some, such as the backup vault or the IAM role:

terraform apply

Terraform used the selected providers to generate the following
execution plan.

Resource actions are indicated with the following symbols:
+ create

Terraform will perform the following actions:
aws_backup plan.prod ebs backups will be created
+ resource "aws_backup plan" "prod ebs backups" {

+ arn = (known after apply)
+ id = (known after apply)
+ name = "prod-ebs-backups"
+ tags _all = (known after apply)
+ version = (known after apply)
+ rule {

rest omitted for brevity
Plan: 3 to add, 0 to change, 0 to destroy.
Do you want to perform these actions?
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.
Enter a value: yes
aws_backup_vault.backup vault: Creating...
Omitted for brevity
Apply complete! Resources: 3 added, 0 changed, 0 destroyed.

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSBackupServiceRolePolicyForBackup.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSBackupServiceRolePolicyForBackup.html

Creating backups with AWS Backup

After Terraform has been applied, we can navigate to our AWS Management Console and search for the
AWS Backup service. Under Backup plans, we'll now find the newly created prod-ebs-backups plan.

The following screenshot shows the details view of this backup plan, including its two associated
backup rules.

prod-ebs-backups | petete || viewsson
Summary
Backup plan name Version ID Last modified Last runtime
prod-ebs-backups ODVIMjASOTEtOGFL October 28, 2024, -
— - Ny00ZGYwLWIJiNDgt 21:14:34
ALEVP plan NzI5YjQ1ZTkxMGJm (UTC+01:00)
cc694b65-04ec-4ccd-
9ff7-c30c9aff4937
Backup rules (2) Edit Delete Add backup rule

Backup rules specify the backup schedule, backup window, and lifecycle rules.

Name 'y Backup vault v Destination Backup vault
O daily_ebs_backup_rule tf-backup-vault -
(@] weekly_ebs_backup_rule tf-backup-vault -

Figure 10.1 - Details view of the backup plan
We can also click on one of the backup rules and see the details for the rule itself. The following
screenshot shows the details of the weekly EBS backup rule we created using Terraform.

You can see the result of the schedule cron expression within the Frequency column, as well as the
result of our life cycle configuration under Total retention period.

235

236

Centralizing Cloud Backup Solutions

AWS Backup » Backupplans » prod-ebs-backups » weekly_ebs_backup_rule

weekly_ebs_backup_rule | petete || Edit |

Summary
Backup rule name Frequency Start within Complete within
weekly_ebs_backup_r Weekly 1 hour 3 hours
ule At 03:00 AM Etc/UTC

(UTC+00:00), anly on

Sunday
Transition to cold Archive Amazon EBS Total retention Backup vault
storage snapshots period tf-backup-vault
Not enabled Mot enabled 1 month
Continuous backup Tags added to
Disabled recovery points -

optional

Figure 10.2 - Details view of our weekly EBS backup rule

The Start within and Complete within times you can also see on the details page tell us when the
backup will be started and completed. Just because we define it to run at 3 a.m. UTC time, does not
mean that it will start at exactly that moment. Rather, there is a one-hour time window (from 3 a.m. to
4 a.m.) in which the backup will start and a three-hour time window in which the backup completes.

Additional information

Backup jobs can fail - for example, due to the underlying volume being removed. You can find
an example of how to set up a notification (using SNS) using the following link: https://
repost .aws/knowledge-center/backup-eventbridge-notifications.

We have now successfully created a new backup vault, as well as weekly and daily rules to run our
backup. But what about resources to back up? This is where the aws_backup selection resource
in Terraform comes into play, which we’ll now use to automatically back up all EBS volumes with a
specific tag.

https://repost.aws/knowledge-center/backup-eventbridge-notifications
https://repost.aws/knowledge-center/backup-eventbridge-notifications

Creating backups with AWS Backup 237

Follow these steps to create a new AWS backup selection and an exemplary EBS volume:

1. Open up the previously created main. t £ file. We'll add a few more resources to the end of it.

2. Start by defining the aws_backup selection resource. We are going to give it a name
(ebs-backup-selection, in this example), the ID of the backup plan we want this selection
to be associated with, and the IAM role ARN we want this selection to use. Notice that this
IAM role will need access to the resources that you want to back up. We have granted this by
associating the AWSBackupServiceRolePolicyForBackup managed policy with our
role. This policy contains (among others) access rights to create and copy snapshots of our EBS
volumes. If you write your own role policy, make sure to include the required access rights:

resource "aws backup selection" "ebs backup selection" {
name = "ebs-backup-selection"
iam role arn = aws_iam role.backup role.arn
plan id = aws_backup plan.prod ebs backups.id

3. So far, we haven't automated the selection. This can be done using a selection_tag block.
In this block, we define the type, STRINGEQUALS, to check that the key and value exactly
match our defined values, and then the name of the key and the value of the tag that our resource
needs in order to be associated with this selection. In this example, we are going to use a key
named ProdBackup and a value of true:

selection_tag {

type = "STRINGEQUALS"
key = "ProdBackup"
value = "true"

}

4. To now test this setup, we'll also create a new EBS volume. The volume will have a total storage
volume of 50 GB, be encrypted, and be of type gp3. Remember to adjust the name of the
Availability Zone (AZ) you are creating this resource in in case you have chosen a different
Region, such as us-east-1:

resource "aws ebs volume" "example volume" {
availability zone = "eu-central-la"
size = 50 # Size in GiB

type "gp3" # General Purpose SSD

encrypted true

238 Centralizing Cloud Backup Solutions

5. So far, this EBS volume is not tagged and thus not properly associated with our backup plan. To
do so, we need to add a tag with the ProdBackup key and a value of t rue to our resource.
In this example, we are also adding a Name tag with the value example-volume. This name
is not relevant to the backup selection process:

tags = {
Name = "example-volume"
ProdBackup = "true"

}

}

6. With our selection created and our example EBS volume created in Terraform, we now need
to apply these changes to our infrastructure. In order to do so, we need to run the apply
command again:

terraform apply
After the successful application of our new version of the Terraform code, we can navigate back to
our backup plan in the AWS Management Console. Under Resource assignments, we can find the

newly created ebs-backup-selection. The following screenshot shows the resource assignment in the
backup plan overview.

Resource assignments (1)

Delete Assign resources

Resource assignments specify which resources will be backed up by this Backup
plan.

1 &

Name v 1AM role ARN

O ebs-backup-selection arn:aws:iam::317322385701:rolefaw

Figure 10.3 — Resource selection in the AWS Management Console

With this, we have now automated the creation, modification, and deletion of our backup vault and
policy using Terraform. By using the backup selection feature and tags, we can now automate the
creation of backups.

S3 life cycle policies to transition data into S3 Glacier

S3 life cycle policies to transition data into S3 Glacier

A common trade-oft when dealing with backups is the cost of storage. In theory, we would like to keep
our backups forever; however, this would lead to an ever-increasing amount of data that we need to
pay for. The reality is also that backups usually lose their value after some time. It is more common
to access and restore a backup that was created seven days ago than it is to access a backup that was
created seven years ago.

Especially in a disaster recovery case, we usually realize that there is an issue with our system and
that the data needs to be restored in a shorter timeframe. Still, there are sometimes requirements —
such as compliance rules - that require us to keep data or a backup of data for long periods of time.

One way to optimize storage costs is by using a purpose-built storage service such as Amazon S3.
Instead of keeping a file on an EBS volume that is constantly backed up, we can keep the same file in S3.

S3 offers different storage classes. In this chapter, we'll briefly introduce four of them before showing
you how to create a life cycle policy that rotates unaccessed items from one storage tier to another.

S3 storage classes

Storage classes in S3 define the price as well as performance metrics and resiliency of the data stored
in it. By using the most suitable storage class for your requirements, you can lower the cost of your
S3 storage.

A list of all storage classes, as well as a performance chart, is available at this link: https: //aws.
amazon.com/s3/storage-classes/. We will introduce the S3 Standard, S3 Standard-IA, S3
One Zone-IA, and S3 Glacier Instant Retrieval storage classes.

(N
Additional information

If you are interested in the inner workings of S3, you can find a blog post called Building and
operating a pretty big storage system called S3 (Andy Warfield, 2023, All Things Distributed
blog, https://www.allthingsdistributed.com/2023/07/building-and-
operating-a-pretty-big-storage-system.html). If you are interested in the
design principles of distributed systems, this is a fascinating read.

- J

The first storage class is S3 Standard. This is the default storage class and is great for frequently accessed
data that has a requirement for low latency and high throughput. When creating a new bucket without
specifying a different storage class, this is the class that the bucket will have. With S3 Standard, a file
is replicated across at least three AZs within a Region. This means that even if two AZs in a Region
are lost, youd still have access to your file.

239

https://aws.amazon.com/s3/storage-classes/
https://aws.amazon.com/s3/storage-classes/
https://www.allthingsdistributed.com/2023/07/building-and-operating-a-pretty-big-storage-system.html
https://www.allthingsdistributed.com/2023/07/building-and-operating-a-pretty-big-storage-system.html

240

Centralizing Cloud Backup Solutions

For files that are less frequently accessed, we have §3 Standard Infrequent Access (or S3 Standard-IA).
This storage class is cheaper than S3 Standard and is well suited for files - such as backups - that are
not accessed frequently but where we need instant access just in case. With S3 Standard-IA, you pay
a retrieval fee.

But what if our data is not that important? Think, for example, about temporary logs and things that,
if lost, could be recreated. For this case, we can use S3 One Zone Instant-Access. Contrary to S3
Standard and Standard-IA, the data in this storage tier is only stored in one AZ within the Region.
This means that data is still fast to retrieve but only stored in one AZ and thus lacks the durability of
S3 Standard and S3 Standard-IA.

Finally, we have the storage classes for archival - the Glacier family. These storage classes are designed
for the archival of data that is rarely accessed. A typical example of where this storage class could be
used is the long-term storage of documents - such as invoices — that need to be stored for multiple
years but are only accessed in the case of an audit:

« Amazon S3 Glacier Instant Retrieval offers low storage prices and - for a fee - the ability to
instantly retrieve these files from the deep archive if needed.

o Amazon S3 Glacier Flexible Retrieval allows you to retrieve data within minutes to a few
hours or do asynchronous bulk data retrieval. This storage class has a lower storage cost than
the Glacier Instant Retrieval class but you will have to wait for your files upon retrieval.

« Amazon S3 Glacier Deep Archive is the lowest-cost storage tier. It is usually used for multi-
year storage of data. Retrieval of data in this class can take up to 12 hours.

As you can tell, there are a lot of options available when selecting a storage tier. One pattern we can
observe is that files that are accessed less frequently are usually better suited with a storage tier that
offers cheaper storage prices at the cost of longer retrieval times or a fee for instant retrieval.

This means that we need to look at each object in our S3 bucket and - based on metadata such as the
last time it was accessed - transition it to a different storage tier. This is something we could implement
via Boto3; however, with this being a very common use case, AWS has implemented a solution called
$3 life cycle policies to make this easier.

Life cycle policies define time intervals in which an object has not been accessed. For example, we
can say that if an object hasn’t been accessed for 30 days, it should be transitioned into a different
storage tier. We are now going to configure such a life cycle policy in the AWS Management Console:

1. Open up the AWS Management Console and navigate to the S3 service.

2. Inthe overview, on the top right, click on Create bucket to open up the dialog to create a new
bucket. Define a name (remember that the name of an S3 bucket must be unique) and leave all
the default settings on before clicking Create bucket at the bottom of the page.

3. Use the search bar - as shown in the following screenshot - to find your bucket and click on
the name to get to the details page of the previously created bucket.

S3 life cycle policies to transition data into S3 Glacier

General purpose buckets Directory buckets

General purpose buckets (16) info ‘] ‘ IE] Copy ARN Empty Delete Create bucket
Buckets are containers for data stored in S3.
Q, marcel-life X | 1 match 1 @
Name A AWS Region v IAM Access Analyzer
Q marcel-lifecycle-policy-bucket Europe (Frankfurt) eu-central-1 View analyzer for eu-central-1
Figure 10.4 - Search field to find our newly created bucket
4. On the details page, navigate to the section on life cycle rule configuration.
5. Under Lifecycle rule configuration, define a name for your life cycle rule. In this example, the

name we have used is test-1ifecycle.

You’ll also need to select to which objects you want this life cycle rule to apply. You could limit
the scope of the rule to only apply to objects with a specific prefix or to only objects that have a
certain tag. In this example, we are going to apply the life cycle rule to all objects in this bucket,
so select Apply to all objects in the bucket and acknowledge this in the “warning box,” which
you can also see in the following screenshot:

Lifecycle rule configuration

Lifecycle rule name

| test-lifecycle|

Up to 255 characters

Choose a rule scope
() Limit the scope of this rule using one or more filters

© Apply to all objects in the bucket

Apply to all objects in the bucket
If you want the rule to apply to specific objects, you must use a filter to identify those objects. Choose
"Limit the scope of this rule using one or more filters". Learn more [%

| acknowledge that this rule will apply to all objects in the bucket.

Figure 10.5 - Name and role scope configuration for our new life cycle rule

241

242

Centralizing Cloud Backup Solutions

6.

Next, we need to define the actions we want to take as shown in the following screenshot:

Lifecycle rule actions
Choose the actions you want this rule to perform.

Transition current versions of objects between storage classes
This action will move current versions.

[] Transition noncurrent versions of objects between storage classes
This action will move noncurrent versions.

[] Expire current versions of objects

[] Permanently delete noncurrent versions of objects

[] Delete expired object delete markers or incomplete multipart uploads
These actions are not supported when filtering by object tags or object size.

Transitions are charged per request

For a lifecycle transition action, each request corresponds to an object transition. For details on lifecycle
transition pricing, see requests pricing info on the requests pricing info on the Storage & requests tab of
the Amazon S3 pricing page [7.

[] 1 acknowledge that this lifecycle rule will incur a transition cost per request

By default, objects less than 128KB will not transition across any storage class

We don't recommend transitioning objects less than 128 KB because the transition costs can outweigh the
storage savings. If your use case requires transitioning objects less than 128 KB, specify a minimum object
size filter for each applicable lifecycle rule with a transition action.

Figure 10.6 — Available life cycle rule actions

AWS allows us to take a variety of actions on our objects. Let’s look at each of them:

Transition current versions of objects between storage classes: Lets us change the storage
class of the current version of an object based on the duration it was in a storage tier

Transition noncurrent versions of objects between storage classes: Lets us change the
storage class of old versions of a file based on the duration it was stored in a storage tier

Expire current versions of objects: Lets us delete the current version of an object
Permanently delete noncurrent versions of objects: Lets us delete old versions of an object

Delete expired object delete markers or incomplete multipart uploads: Lets us permanently
delete objects that were previously marked as expired

S3 life cycle policies to transition data into S3 Glacier 243

For our example, select Transition current versions of objects between storage classes and
acknowledge the fact that we want to do this in the yellow box.

Additional information

In the previous explanation, the concept of current and noncurrent versions of an object, as
well as delete markers, came up. S3 supports versioning of its files. So, when we upload a file
with an existing name - for example, a new version of a picture - the old version will not be
overwritten but rather become a noncurrent version of the file.

Similarly, when deleting an object when versioning is enabled, the object is not actually deleted.
Instead, a delete marker is put as the current version of the object but previous versions are still
available and a delete can thus be undone.

Versioned objects are a great way to protect our data from accidental deletion; however, we still
need to pay for the storage of all noncurrent versions. It can thus be advisable to either transfer
them to a low-cost storage tier or expire them completely.

- J

7. Next, we define the transition of our current object versions. We'll keep the object in the
Standard-IA tier for 30 days after its creation. Then, we'll transition it into the Glacier Instant
Retrieval tier after 90 days and, finally, after half a year, the file will be transitioned into Glacier
Deep Archive.

Transition current versions of objects between storage classes

Choose transitions to move current versions of objects between storage classes based on your use case scenario and performance access
requirements. These transitions start from when the objects are created and are consecutively applied. Learn more [7

Choose storage class transitions Days after object creation

‘ Standard-1A v ‘ ‘ 30 v ‘ ‘ Remove ‘
‘ Glacier Instant Retrieval v ‘ ‘ 90 v ‘ ‘ Remove ‘
‘ Glacier Deep Archive v ‘ ‘ 180 G ‘ ‘ Remove ‘

Add transition

Figure 10.7 - Transition configuration for our life cycle policy

Finally, we can review our transition and expiration policy at the bottom of the page before clicking
the Create lifecycle rule button to create our policy.

244 Centralizing Cloud Backup Solutions

The following screenshot shows the previously defined transition configuration.
Review transition and expiration actions

Current version actions Noncurrent versions actions

Day 0 Day 0

: Dbjetisunlasded No actions defined.

N

Day 30

« Objects move to Standard-1A

4

Day S0

» Objects move to Glacier Instant Retrieval

4

Day 180

* Objects move to Glacier Deep Archive

Figure 10.8 — Review of our life cycle policy

With this, we have now defined a life cycle policy that will automatically transition our objects from
one tier to another based on the time since the object was created. To test this, you can upload a file - it
needs to be at least 128 KB in size - to the folder and wait for the transition to happen after 30 days.

The reason for the file size of at least 128 KB is that AWS will - per our configuration and the default -
only transition files that are at least that size. The reasoning behind this is that the cost of transitioning
the files for smaller sizes is higher than the storage cost of such small files.

We have now seen how we can use S3 and the different storage classes to optimize our storage costs.
Next, we will look into the concept of bunker accounts before concluding this chapter.

Exploring bunker accounts for backups

Exploring bunker accounts for backups

We have so far looked at AWS Backup and how we can use it to create backups that are stored in the
same account as the resource. This type of setup is ideal for quick restoral of the data. The problem
with this approach is, however, that an attacker - if they can compromise the account - could also just
delete the backup. This doesn’t necessarily need to be an attacker either. Another systems engineer or
a careless developer writing an automation script that deletes the wrong resources could easily trigger
the deletion of a backup.

One concept to guard against this is that of the bunker account. A bunker account is a separate AWS
account that our backups are copied into. The following screenshot shows the basic architecture of
a bunker account.

CUE AWS Cloud
AWS Account (Bunker Account) AWS Account {Prod Account)
I Baclkup Copied I
1O) |« into Bunker 1.) |« 403
Vault
L=I_=- L:I_ﬂ'
AWS Backup Vault AWS Backup Vault Example EBS
Volume

Figure 10.9 - Bunker and prod accounts in an architecture

Here, the backup of our resource, for example, an EBS volume, is first stored in the AWS Backup
vault within the production account. The backup is then copied across into another AWS account
— the bunker account - for additional storage. Even if an attacker or unattentive employee were to
wipe both the EBS volume and the vault in the production account, we could still restore the data
from the bunker account.

In this setup, the IAM policies that govern the cross-account access of the production account into the
bunker account only allow the creation of backups but not their deletion. So, even with administrative
rights in the prod account, an attacker couldn’t delete the backups kept in the bunker account.

Since this pattern requires cross-account access, we'll revisit it in Chapter 16 on operating in a
multi-account environment.

245

246

Centralizing Cloud Backup Solutions

Summary

In this chapter, you have seen how to use AWS Backup as a centralized solution for your cloud backups.
We automated the creation and configuration of backup vaults, plans, and rules with Terraform
and tags before exploring the different storage tiers in S3 and how a life cycle policy can be used to
transition objects between the tiers.

Finally, we saw the concept of bunker accounts and how they can introduce another layer of security
for our backups against negligence or bad actors.

In the next chapter, we'll cover the topic of disaster recovery (where taking backups plays an integral role).

11

Disaster Recovery
Options with AWS

In our path in the cloud so far, we have only dealt with the happy path. Everything we have set up so
far always just worked. But what if it did not? What if we roll out a configuration change that prevents
traffic from reaching our database? What if a disgruntled employee tries to harm our company by
deleting all of our production instances?

You might argue that we can put controls into place and that no bug can get past rigorous testing.
Even if that is the case, what about natural disasters? What about an earthquake hitting the location
of our data center or the fiber cables of an internet service provider (ISP) going down?

Dr. Werner Vogels, chief technology officer at Amazon, famously quipped “Everything fails all the
time.” The meaning behind this goes beyond the simple words. What Vogels is acknowledging here
is that any distributed system (or any system, for that matter) might eventually fail due to something
going wrong. We have to accept this fact and design our systems in such a way that they can either
proactively detect and mitigate a failure, be resilient against those we can anticipate, and recover from
the disasters that occur.

This chapter is about the strategies and architectures we can employ to build a workload that can
recover from a disaster. As with everything in IT, there is no free lunch so we'll also discuss the cost
and complexity implications associated with the architectural choices we make. This chapter serves
as the theoretical background to the more practical resilience and chaos engineering part, which we'll
cover and see in action in Chapter 12, Testing the Resilience of Your Infrastructure and Architecture
with AWS Fault Injection Service.

248 Disaster Recovery Options with AWS

In this chapter, we're going to cover the following main topics:

e An introduction to recovery time objective (RTO) and recovery point objective (RPO) as
the business metrics that define disaster recovery strategies

o An introduction to disaster recovery strategies
o The architecture of backup and restore

o The architecture of pilot light

o The architecture of warm standby

o The architecture of multi-site active/active

So, let’s get started!

Technical requirements

Since we'll be dealing with architecture only in this chapter, there are no technical requirements. It
is beneficial if you are aware of the idea of disaster recovery in the general sense of the term but we’ll
introduce it briefly in the first section.

For this chapter, there is no Code in Action (CiA) video available.

Defining our disaster recovery strategy

AWS defines disaster recovery as follows:

“Disaster recovery is the process by which an organization anticipates and addresses technology-related
disasters. The process of preparing for and recovering from any event that prevents a workload or system
[from fulfilling its business objectives in its primary deployed location], such as power outages, natural
events, or security issues.”

Note

The preceding quote is taken from https: //aws.amazon.com/what-is/disaster-
recovery/. The text in square brackets was added by the author and is not in the original quote.

We can summarize this description as the process an organization puts into place to prevent and react to
technology-related disasters. But who decides what the correct process is? And how do we measure it?

RPO and RTO - the key metrics for DR

Most modern IT systems serve some sort of direct or indirect business purpose - either your company
provides a software solution to your customers (say, in the form of a webshop) or you run applications
that are critical to your company’s function, such as a machine control system in an automotive parts
company in the cloud.

https://aws.amazon.com/what-is/disaster-recovery/
https://aws.amazon.com/what-is/disaster-recovery/

RPO and RTO - the key metrics for DR

At the other end of the spectrum, you might also run applications that are not very important. For
example, let’s say the online lunch plan of your company cafeteria is unavailable. It would certainly
be an inconvenience but everyone could still just go to the cafeteria, see what is offered, and proceed
with their lunch.

As we can see from these examples, different applications require different types of disaster recovery
strategies. Based on the level of importance, the applications need to be guarded against different
disaster events. I’s much more likely that a single server crashes than it is that an entire region in
AWS becomes unreachable but, depending on the criticality of our workload, we might need to guard
against the failure of an entire region, however unlikely it is.

As you can see, our discussion on disaster recovery is very vague so far. If you go to the product
owner or business counterpart and ask them how long their application can be down, the most likely
answer is going to be “never” So, how can we quantify the requirements for disaster recovery? We
generally use RPO and RTO. The following figure shows the relation between RPO, RTO, and the
time of our disaster.

Amount of time the application
is unavailable

A
4 N

. . . > Timeline
RPO
\

Time of Disaster RTO
v
e
Amount of data that
is lost

Figure 11.1 — The relationship between RTO/RPO and the time of disaster

RPO

RPO describes the amount of data that is acceptable to be lost in the case of a disaster. Let’s assume
our software saves all of its data in one place - a database server. If we only do a daily backup/snapshot
of the data at 2 AM, our RPO will be one day. In the worst-case scenario, our database server dies
at 1:59 AM right before the start of the next backup. In that case, we would lose all the data that has
been written to the database server since the previous snapshot was taken.

With our application now impaired due to the unavailability of our database server, the second metric
comes into play - RTO.

249

250

Disaster Recovery Options with AWS

RTO

RTO describes the time it takes after a disaster has occurred until your application is fully functional
and fully available again. This can also be described as your downtime.

Let’s stay with the previously described example of the web application with a database server that
goes down. After the server is down, we need to do the following:
1. Detect that our application is impaired.
2. Detect that the unreachable database server is at fault for our application not being available.
3. Start a new database server.
4. Restore our data from the backup to the new database server.
5

Change our application to use the new database server.

All of these steps take time and will factor into our RTO.

There are architectural patterns (which we will see later in this chapter) that can be implemented to have
RTO and RPO values of nearly zero. However, this comes at a cost. The rule of thumb is that the lower
the RTO and RPO, the higher the cost and complexity of our infrastructure and application architecture.

What RTO and RPO to choose is ultimately up to your business requirements. As mentioned in the
introduction, a business-critical application without which all of your manufacturing robots can’t
function might warrant a much lower RTO and RPO than the lunch menu.

When arguing with your business counterparts about the cost associated with one or the other
architecture in terms of DR, you can reframe the conversation into the question, How much would x
hours of downtime cost us? This, combined with the likelihood of a disaster event occurring, will inform
the architectural pattern to select. To stay with our previous example, the answer to that question for
our manufacturing robots’ control software could be in the millions while the answer for the lunch
plan would probably be close to zero.

We are now going to do a quick overview of four architectural patterns you’ll often encounter when
dealing with disaster recovery:

o Backup and restore
o Pilotlight
o Warm standby

o Multi-region active/active

After the overview, we'll then discuss each of the architectures in more detail and talk about cost and
complexity implications when choosing that pattern. In Chapter 13, you’ll see an application evolving
from a backup and restore configuration to a multi-region active/active deployment and see how to
test its resilience against failures using chaos experiments.

An introduction to disaster recovery strategies

An introduction to disaster recovery strategies

As pointed out in the AWS definition of disaster recovery we saw at the beginning of the chapter, DR
is triggered in the case that an application isn’t functional from its primary deployed location anymore.
This means that most DR strategies will involve one or more secondary locations from which the
application could either be restored or to which traffic could be redirected.

We can thus generally differentiate between active and passive locations. An active location (for
example, a Region in AWS) is actively used to serve traffic while a passive location isn't used to serve any
production traffic. Our DR strategies can then be divided into active/passive and active/active setups.

A common depiction of the different disaster recovery strategies is to align them along a spectrum,
as shown in the next figure:

Backup & . . Warm Multi-site
Restore Pilof Light Standby active/active

< >

RPO/RTC RPO/RTO RPO/RTO RPO/RTO
Hours 10s of minutes Afew minutes Near zero

Figure 11.2 - The spectrum of disaster recovery patterns

The main disaster recovery strategies include:

o Backup and restore means that we keep a backup of our data and restore the service in the
case of a disaster.

« In pilot light, we have a secondary deployment of our entire application (for example, in another
AWS Region) but keep the infrastructure (for example, EC2 instances) stopped. In the case of
a disaster, we only need to start the previously turned-off instances.

« Warm standby is similar to pilot light with the only difference being that the infrastructure in
our passive site is only partially turned off.

o In multi-site active/active, we have two (or more) fully active sites that could take over the
traffic from the other site at any moment without any interruptions.

To reiterate the previous distinction between active/passive and active/active patterns, backup and
restore, pilot light, and warm standby are active/passive patterns since the DR site is inactive for
production traffic. Multi-site active/active is, as the name suggests, an active/active pattern since both
sites are active and available for traffic.

As we move from left to right with the strategies, we can see how the estimated RTO/RPO goes from
hours to near zero.

251

252 Disaster Recovery Options with AWS

To get a better understanding of these architectures, let’s see the architecture diagram for each of them
and discuss the cost and complexity implications when it comes to an exemplary web application.

The application we are going to use as an example is a standard API application. A load balancer
distributes traffic to a fleet of instances. In the background, there is a database server from which data
is pulled. The following figure shows the basic application architecture as we would see it in AWS:

AWS Cloud

Elastic Load Balancer

Availability Zone Availability Zone

Private subnet

H

i

Il |Private subnet
! (@)

1

9

1
1
1 :
1 1
1 1
1 :
JI :
5 s
' 1
: :
: I '
1 ! 1
1 I 1
1] '
! | 1
1 | 1
: | :
'. L
: |)] H i I N
B - .
' ! 3 NN ! ! FENNNR . ! '
E N 3 - 4— AutqScalinggtoup —»3 - : ! :
|] = — ! 1 1 - 1 !
| bt TTTTT ' ' TTTTT ' ['
' | . 0 : 1 | ' : '
I 1 1
‘: |] Application ! 1 Application H ! '
. b Server 1 : Server 0 | !
1 1 [}
i S O Sy IS B
: ! ! 1 1 :
; ! i ' : '
1 = 1 1 ! '
E ! @ Private subnet ! ' Private subnet ! '
L Il : ! o
1 I 1] | 1
! 1 1] 1 1
: ! Amazon ! ' Amazon ! :
1
i ! RDS t replicationt——» | RDS | i
Lo | : b
1 1 : 1 S : 1
. : Amazon RDS 1 : Amazon RDS I .
H : Database Instance b ! Database Replica | !
) I 1 ' i '
S i ! Lo
' I 1 1 |
' | 1 ' | '
1 | _: 1 J| :
. .

Figure 11.3 - Basic architecture of our application

Asyou can see in the architecture sketch, we have already taken some resiliency-related precautions
by using concepts you have seen previously in the book. The application has instances deployed in

An introduction to disaster recovery strategies

Auto Scaling groups across two Availability Zones (AZs) within the same Region. The auto scaling
groups allow the system to respond to a surge in traffic while also being able to detect unhealthy
instances, terminate them, and spin up a new instance for our application server. We use an elastic
load balancer together with health checks to distribute traffic between the instances in the two AZs.

For the database, we have opted for a database in Amazon Relational Database Service (RDS), which
supports cross-zone replicas (for example, Aurora Postgres allows this). That means that the data is
synchronized between the two AZs.

This architecture should already be resilient against the failure of a single AZ. If the left AZ in our

architecture goes down, the right AZ would still have all the data and resources to serve the traffic.

Backup and restore DR strategy

With backup and restore, the strategy is to take regular backups and restore our application from these
backups in the case of a disaster. The following figure shows the architecture diagram for a backup and
restore solution. We discussed the concept of a bunker account in the previous chapter on backups.

w AWS Cloud =
AWS Account

Elastic Load Balancer

Awailobility Zone Awailability Zone |

@ Private subnet

E E j:::t -+ Auft‘:l Scaling group L—m j:lf

Private subnet

' '
Application Apphicetion

Sarver Sarver

I
I
I
I
I

I
!
i
Y
I
"
i
[
!
!
i
I
L
o
=) 1
. Private subnet E Private subnet i |
I
[
]
H
I
N
I
i
I
i
|
I
I
I
"
I
oy
I

i
I
I
i
H i
i I
H i
i |
|
|
I~ O i i
* | 1
I II oo ! Amazon | Amazon
LS N L RDS ! aplicats » | RDS
@schedule ! Treple L
| E i E
LE_E' | i
| i
1 i
i |
1 i
i |
|
i 1
|
| i
1 I

AWS Account - Bunker Account

o Dy

F 3

Amazen RDS
Datohose Reploa

Amazen RDS

Backup Voult Dotobose Insfance

Figure 11.4 — Backup and restore setup with a bunker account to store the backups in

253

254

Disaster Recovery Options with AWS

In the case of a disaster, wed spin up a new deployment of our infrastructure and restore the state of
the database from the backup vault.

The big benefit of the backup and restore strategy is its relative ease of implementation and the low
cost. We only pay for the storage of our backups, and we have no infrastructure that sits idle waiting
for a disaster to happen.

The downside is the time it takes to restore our application upon a disaster. There is another devil in
the details here. With a backup and restore strategy, it can be very easy to rely on the backup but never
test it. The AWS Well-Architected Framework explicitly calls out the need to test the restoration of
your backups regularly to be sure that you are truly backing up all the data that you need for a full
restore. In order to facilitate this, it is generally advisable to automate the process of restoring a backup
so that you can test restores regularly.

Looking at the diagram, there is another disaster case that is not handled with this architecture. With
the current proposal, wed store our backups in the same region as the original application. If the entire
region goes down, we might not have access to our data and thus it might be possible that we can't
restore from our backup. We could mitigate this by replicating our backup not only cross-account
(from our workload account to our backup bunker account) but also cross-region.

e R
Additional information

AWS keeps a public record of Post-Event Summaries (PESs) for each issue that had a significant
impact on customers. A significant impact on customers does not mean that it was a regional failure.

For example, the PES on a service event in the Sydney region on the 4 of June, 2016 explains
the impact a service event had on the EC2 instances and EBS volumes in one of the AZs of
the Sydney region.

You can find all PESs at this link: https://aws.amazon.com/premiumsupport/
technology/pes/.
N\ J

While backup and restore offers a cost-efficient solution for applications that can handle downtime
of hours (or even days), there might be cases where we need to be able to restore faster at a slightly
higher cost. Let’s next look at the idea behind the pilot light strategy. Before doing this, we’ll need to
modify our application architecture a bit. Going forward, we'll deal with architectures where there
are two load balancers, and thus two different entry points, to our software. We'll thus add a Domain
Name System (DNS) service to our architecture. In this example, we'll add the AWS DN service,
called Amazon Route 53, to the architecture. The following figure shows the adapted basic architecture
with Route 53 added:

https://aws.amazon.com/premiumsupport/technology/pes/
https://aws.amazon.com/premiumsupport/technology/pes/

An introduction to disaster recovery strategies

B AWS Cloud

J_:(Region

H :
i :
: .
, Elastic Load Balancer E
' 1 1 :
' ! Availability Zone ' ! Availability Zone ' '
' | ' | 1 '
' ! ' | ' '
: i @ Private subnet E i @J Private subnet E !
S S | .
1 I 0] T 1 1 1 |
i I , ' I 0 ! '
P I S
H 1 | ' | H 1 |
. N 4— Autd Scalinggroup —» : : |
P : : A
' | | ' | ' 1 !
' 1 . 0 1 | 1 ' 1 !
' 1 Application ! i Application H ! |
H i Server 1 ' Server z I |
- . R S S
oo ' ! Lo
' = '] .
! i |‘:\?'J Private subnet E i E !
. J, : | P
' 1 I I 1 '
' 1 ' | 1 '
, ! Amazon ! ! Amazon ! !
: ! RDS rreplication 4 p |RDS H E
o i | P
' I I | ' '
: ! Amazon RDS] | Amazon RDS : !
H ! Database Instance ' ! Database Replica ' !
N ; | .
N i ! P
]] ']] h
1] 1] 1 1 i
b e e a |

Route 53

Figure 11.5 — Architecture of our application including Route 53 for DNS

Here, Route 53 just routes all traffic to our one elastic load balancer in our single region.

255

256

Disaster Recovery Options with AWS

Pilot Light

In a pilot light strategy, we generally have a secondary passive site. In the case of AWS, this passive site
is usually a secondary region. In that passive site, we have our infrastructure (for example, the EC2
instances used to serve our application) provisioned but turned off. The only running infrastructure
in our secondary region is those components that hold any data, such as the database servers. Due
to the latency between regions being too high to facilitate cross-region synchronous replication,
the replication of our data will happen asynchronously. RDS and storage services such as S3 offer
asynchronous cross-region replication.

(7
Additional information
For a list of all database engines that support cross-region replication in RDS, you can follow
this link: https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/
Concepts.RDS Fea Regions DB-eng.Feature.CrossRegionReadReplicas.
html.

- J

The following diagram shows the architecture for a pilot light deployment with two different regions:

ma\ws Cloud

.R:‘gion s

Flessie Lood Balarcar

Flaztic Laad Buiancer

Aveailasility Zone

m Frivate submat
hd

Amozon

[P R

T
£mozcnROS
Doalebzas lnlreu

! STy
i Scaing groun — T r

Avoilabilty Zore

Applkcafon

[

] Privatasubnet

Amazn
+ |RDS =y
=

Amaarn RIS
Uatabase Henlze

Agilabiity Zone

vt subins)

Frrsste st

unilesility Zen:

:I. [:-1— ALt e

i

B Frivnte subrat

Amazmn|
RDS e
-

e
Dbl e

+

alirg greap =

m Friveta susaet

v Frams-cagian P e

Figure 11.6 — Pilot light deployment across two regions

As you can see in the diagram, the path to the secondary region from Route 53 is dotted to indicate
its inactive status. The application servers in the auto scaling group are inactive and the only active
components in the secondary region are the load balancer and the database.

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.CrossRegionReadReplicas.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.CrossRegionReadReplicas.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.CrossRegionReadReplicas.html

An introduction to disaster recovery strategies

We also use asynchronous cross-region replication to replicate our data from the primary to the
secondary region.

The benefit of this deployment is its relatively low RTO while being cost-efficient since only the minimal
required infrastructure (the database and load balancer) is running.

The downside of pilot light, besides the increase in cost, is the added operational and architectural
complexity. When selecting a database service, for example, we now need to make sure we use an engine
that supports the required cross-region replication. Whenever we update our application in the primary
region, we need to make sure that we also update the turned-off instances in our secondary region.

In the case of a disaster that requires us to switch over to our pilot light region, there is another
problem. While the data is replicated and available in our new region, the infrastructure to serve that
data still needs to be started up. This means that our customers will still encounter some unavailability
from our API. When dealing with complex applications, spinning up all the instances could require
significant time.

This is where our next strategy, warm standby, comes into play.

Warm standby

Warm standby looks very similar to pilot light. We also have a secondary region to which our
infrastructure is deployed and our data is replicated. No production traffic is served from our secondary
site. The following figure shows the architecture diagram for a warm standby.

Em.!smndd .

Route 53

Elastic _ood Dalancer

railiatilivy Zooe i : Awsriabilily Tore n o ; Poest bility Zore

Private subnat

Awailabiity Zome

Betynra sibrat

i

Privata stbnet

L

Apokcten sipplication

Sarver Sarvir Sarvar oo live)
[Froeotesabnat Privata subnet [etvoresibest
|
v
Amezon)| Amazon
RDS RDS
7 ! ! 2
Amazen KOS H i Amacn OGS

Amazan RDE

sl H H o ELARY
Dalcbea lislarwe ' : A e rcabisnm bz

Figure 11.7 - Warm standby architecture

257

258

Disaster Recovery Options with AWS

The difference between pilot light and warm standby lies in the fact that we have active instances in our
secondary site. In the case of a disaster, this means that we can switch over our traffic to the secondary
site and, instead of waiting for the instances to boot, we can already use our existing provisioned
application server infrastructure to serve requests while the auto-scaling group takes care of scaling
out our infrastructure to be able to handle the entire load.

Besides the implication that we need data storage services that allow cross-regional replication, the
warm standby approach has obvious cost implications. We'll have resources that idle the entire time
- until a disaster happens.

Pilot light and warm standby are, due to their relatively low-cost overhead, very efficient solutions for
applications that require fast recovery times and low data loss. When opting for such an approach, we
do need to take architectural considerations into account, mainly in the fact that all our data-storing
components (such as databases or object storage such as S3) need to support cross-region replication.
We also have implications for our operations since we now need to make sure that the deployments
in our two regions are in sync.

But what if we can tolerate near-zero downtime? This is where multi-site active/active comes in.

Multi-site active/active

As the name suggests, multi-site active-active is the only architectural pattern on the list that is an
active/active instead of an active/passive pattern.

In an active/active deployment, both sites accept production requests, and both serve them. If one of
the regions is impaired, traffic is simply shifted over to the other active region. The following figure
shows an example of such an architecture.

An introduction to disaster recovery strategies

w.ﬂ'\'.’ﬂ Cloud

Regice

Ekstic Loz Balarcar Zlasty: Lead Balencer

Avmilaility Zone Awailabiity Zome Availobility Zore Avegilauility Zone

Frivate shaat [Frivets subast

CyromrolB

Figure 11.8 — Multi-site active/active architecture

What might look like a small change when drawn up on a whiteboard has significant implications for
our application architecture. Compared to active/passive deployments where the data only needed to
be copied from the active to the passive region, in an active/active setup, we also have write requests in
our secondary region. We can solve this issue either by redirecting all write requests to one region or
by using a database engine such as Amazon DynamoDB, which has features for eventual consistency
that allow us to write in one region and have that change propagate to all other regions where the
table is used.

As you can see, operating in such an environment has significant implications not only for our
infrastructure setup but also for our software architecture. In addition, we have cost implications
since we now have two active regions instead of only one.

The benefits of this approach are the near-zero RTO and RPO. Ideally, users don’t even realize when
the failover to another region/site happens.

259

260

Disaster Recovery Options with AWS

' N
Additional information

Netflix is famous for implementing a multi-region active/active setup. If you want to read
about the challenges and the solutions to those challenges that the engineering team there
encountered when setting this up, you can check out the following post on the Netflix engineering
blog: https://netflixtechblog.com/active-active-for-multi-regional-
resiliency-c47719f6685b.

A J

Summary

In this chapter, we have covered the theoretical background and the different building blocks of disaster
recovery. We introduced the two key metrics, RPO and RTO, to define what DR requirements we
had. We then looked into four different architectural patterns: backup and restore, pilot light, warm
standby, and multi-site active/active. We discussed the pros and cons of each of these solutions when
it comes to engineering overhead and spending on infrastructure.

With this background covered, in the next chapter, we'll evolve an actual application from a backup
and restore deployment to a multi-site active/active deployment and see how we can use chaos
engineering and chaos experiments to test that features such as database failovers actually work as
we intend them to.

Join the CloudPro Newsletter with 44000+ Subscribers

Want to know what’s happening in cloud computing, DevOps, IT administration, networking, and
more? Scan the QR code to subscribe to CloudPro, our weekly newsletter for 44,000+ tech professionals

who want to stay informed and ahead of the curve.

E T E
]
]

https://packt.link/cloudpro

https://netflixtechblog.com/active-active-for-multi-regional-resiliency-c47719f6685b
https://netflixtechblog.com/active-active-for-multi-regional-resiliency-c47719f6685b
https://packt.link/cloudpro

12

Testing the Resilience
of Your Infrastructure and
Architecture with AWS Fault

Injection Service

In the previous chapter, we introduced four different architectural patterns or strategies that can be
used to deploy resilient applications in the cloud. However, it is hard to judge the resiliency of an
application just from its architecture. Much depends on how the architecture is implemented. In
this chapter, we'll introduce a method to test whether the disaster recovery configurations we have
implemented would work in the case of a failure.

For this, we'll introduce AWS Fault Injection Service (FIS). AWS FIS is a tool for running chaos
engineering experiments against your infrastructure deployed on AWS.

In this chapter, we'll cover the following:
 Introduction to chaos engineering and chaos experiments
« Introduction to AWS FIS
o Building a chaos experiment in AWS FIS

262

Testing the Resilience of Your Infrastructure and Architecture with AWS Fault Injection Service

Technical requirements

A basic understanding of RDS, as given in the previous chapter, is beneficial since we'll be triggering
a database failover of RDS.

A basic understanding of Terraform, which well use to provision the underlying infrastructure for
our chaos experiment, is required.

All scripts from this section can be found at the following GitHub link: https://github.com/
PacktPublishing/AWS-for-System-Administrators-Second-Edition.

For this chapter, there is no Code in Action (CiA) video available.

Introduction to chaos engineering and chaos experiments

How do we test the resiliency of our application and verify that mechanisms such as database failovers
work? One way we could do this is by building a long checklist of best practices and checking our
workload - maybe programmatically — against this. On such a checklist, you might find a line that says
Check that RDS is deployed in multiple AZs. Wed then go into our AWS console and verify that RDS
is indeed deployed in a high-availability mode into multiple AZs. But is our software also properly
configured to use this multi-AZ deployment? And how long will it take for our application to recover
after a failure? Will it recover at all?

To answer these questions, we'll need to try it out. This is where chaos engineering and chaos
experiments come into play.

The idea of chaos engineering is to purposely inject faults and failures into a system to test its
resiliency and ability to withstand and recover from them. In other words, we purposely inject chaos
into our application infrastructure. The goal of chaos engineering, however, is not to just destroy all
our infrastructure. Instead, we run experiments that simulate a behavior that we might encounter in
the real world and that our architecture is built against.

Let’s look at a more concrete example. The following figure shows the architecture of a basic two-tier web
application with a web server and a database server, which we have already seen in the previous chapter:

https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition
https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition

Introduction to chaos engineering and chaos experiments

Elastic Load Balancer

Availability Zone

Private subnet

Availability Zone

4l |Private subnet

1
|
1
|
1
1
1
1
|
1 ! ' | " |
! 1 : 1 _’L_ | z |
oo P - .
' Vo i '
i 0 44— AutgScalinggroup —» : !
. . ! : :
i : :] H | 1 H | !
' Vo Application ! i Application H ! '
' ' ; Sarvar] 1 Server H 1 H
I 7 1l | '
! : --------------------------- Frmmm—m——— IT'--'--'--'--'- e 1 1}
| ! ' | | 1
' 1 1 1 | :
o : ! oo
b O SR . i 6.1 Private subnet b
' i 1 | ! '
b ¢ i | ¢ Lo
! 1] L} 1 1 v
i ! Amazon ' ! Amazon ! H
i ! RDS r replication 4 p |RDS | :
b ; : P
i ' ' | i '
I 1 | H
! H Amazen RDS] d Amazon RDS 1 '
| ! Database Instance . ! Database Replica | :
o . |
| ' ' I | :
' 1 : 1 : H
: 1 i i J H

Figure 12.1 - Basic architecture of a web application on AWS

This architecture uses a multi-AZ deployment of its database using Amazon RDS and is deployed
into a single Region.

What kind of failures would we expect this application to be able to withstand? From the architecture,
wed expect the application to be able to handle the failure of an entire AZ without a long degradation
of services. If the AZ with the primary database server goes down, wed expect RDS to handle the
failover to the secondary database server. The load balancer should direct incoming traffic to the
remaining health instances.

However, we do not expect this architecture to withstand an entire Region failure, for example. With
the entire application being deployed only into a single Region, this is not a failure scenario that we
have architected for.

263

264

Testing the Resilience of Your Infrastructure and Architecture with AWS Fault Injection Service

A good chaos experiment could be to check whether our application can gracefully handle a database
failover. Here, we would hypothesize that we expect the application to continue performing due to
the automated failover of our database server. A bad chaos experiment would be the aforementioned
Region failure. The only thing we would prove with that is that an architecture that isn’t designed to
withstand Region failure and is deployed into a single Region can't withstand a Region failure.

So how do we design these chaos experiments?

1. We start with a hypothesis. This hypothesis is usually an assumption about what your architecture
should be able to withstand. For example, a hypothesis could be My application will continue
to function if 20% of my instances have a failure and terminate. Architecturally, you might have
mitigated this scenario via an Auto Scaling group.

2. Design an experiment that tests this hypothesis. This means you will need a service to randomly
terminate 20% of the EC2 instances. We'll introduce AWS FIS to do exactly this next.

3. Define the metrics that you want to monitor during your experiment to assess the health of your
application. Staying with the previous example, a useful metric could be the number of 5XX
errors returned to users by your web server. In a scenario where we are failing over a database,
a metric could be the number of database connections that were denied.

4. Run your experiment to verify that your architecture is actually resilient.

Additional information

It is important that you run your experiment against a system under load. Applications react
very differently to failure depending on whether they are under a lot of load or just idling. If
you don’t want to run your chaos experiments in production (which is understandable), a great
place to run them is during your scenario or load tests where the application is experiencing
simulated but real requests.

AWS FIS for chaos experiments

In theory, we could run these chaos experiments in AWS by just using API scripts. Many actions, such
as the failover of a database cluster, can be triggered via the API. However, what if we want to run
these experiments over and over again, ideally with centralized logging and a visualization? This is
where AWS FIS comes in. AWS FIS is a service for resiliency testing and building chaos engineering
experiments. It comes with predefined sets of actions, such as the failover of an RDS database cluster
or the random termination of EC2 instances. We can then orchestrate these actions into a sequence
of actions that simulate a real failure.

A word of caution here. FIS used to be called Fault Injection Simulator. This might be a bit misleading
as the service does not simulate the termination of EC2 instances or the failover of a database cluster
and the simulation of the results. It actually triggers a shutdown or failover on your real and running
infrastructure. While you can run this in your production, as Netflix famously does for their chaos

Introduction to chaos engineering and chaos experiments

engineering work, it is generally advisable to begin by running these in your testing or integration
environment. A great time in your deployment cycle to run these experiments might be during scenario
or load tests when there is simulated traffic on the system under test.

Building a chaos experiment with AWS FIS

In this section, we'll be building an actual chaos experiment with AWS FIS. This experiment will
trigger a failover in our database cluster to simulate a partial database failure. To do so, we'll create
an experiment template that contains the failover action we want to trigger. From this template, well
then launch a new experiment and see the chaos in action.

Before we begin with this section, we’ll need some infrastructure to run our experiment against. You
can find the Terraform code to set up the testing infrastructure in the source code repository under
chl2/main. t£. This script does the following:

« Creates a new VPC and private subnets in the eu-central-1 (Frankfurt) Region in AWS
+ Creates a multi-AZ deployed RDS cluster with Aurora PostgreSQL as the database engine

» Creates a new CloudWatch Logs group that well use to write the logs from our chaos
experiment into

To create the sample infrastructure, follow these steps:

1. Inyour terminal, navigate to the ch12 folder from the GitHub repository.

2. Inthe folder, run the following command to initiate your Terraform directory:

terraform init

3. Runthe terraform apply command to create your new infrastructure:

terraform apply

It can take a couple of minutes for the RDS cluster and its accompanying instances to be created and
Terraform to finish.

(1
Caution

Due to the nature of multi-AZ deployments, the preceding deployed sample infrastructure
can be costly. To minimize the cost impact, after running your chaos experiment, remember
to delete the VPC, RDS cluster, RDS instances, and CloudWatch Logs group by using the
terraform destroy command.

265

266 Testing the Resilience of Your Infrastructure and Architecture with AWS Fault Injection Service

With the infrastructure that we want to run our experiment against deployed, let’s get started with
creating our chaos experiment. To do so, follow these steps:

1.

Open the AWS console and search for FIS. Alternatively, you can use this link to open up
the console page: https://eu-central-1.console.aws.amazon.com/fis/
home?region=eu-central-1#Home.

On the console, select the Experiment templates menu entry in the left-hand menu, as shown
in the following figure:

AWS Resilience Hub <

Fault Injection Service

¥ Resilience management
Dashboard
Applications
Policies
What's New

¥ Resilience testing
Experiment templates
Scenario library
Experiments

Spotlight

Figure 12.2 — Experiment templates under Fault Injection Service in the Resilience testing section

You'll be presented with a (most likely empty) list of existing experiment templates. Click the orange
Create experiment template button to open the wizard to create a new experiment template.

You'll first be asked to provide a name and description of your experiment. In this example, we
will use RDS Failover Test for the description and RDS Failover as the name. The
content of your name and description should be descriptive so that other DevOps engineers
can understand what this experiment does.

You’'ll also be asked what account the target workload is under. Since it is not uncommon
for workloads on AWS to be spread across multiple AWS accounts, we could select targets
for our actions from our current as well as multiple other accounts. Since our current target
resources — namely, our previously created RDS cluster — run in the same account that we run
our experiment, we'll select the This AWS account... option, as shown in the following figure:

https://eu-central-1.console.aws.amazon.com/fis/home?region=eu-central-1#Home
https://eu-central-1.console.aws.amazon.com/fis/home?region=eu-central-1#Home

Introduction to chaos engineering and chaos experiments

Specify template details

Description and name

Description
Add a description for your experiment.

[RDS Failover Test J

The description must have 1 to 512 characters.

Name - optional
Creates a tag with a key of 'Name' and a value that you specify.

[RDS Failover]]

The name must have 1 to 256 characters

Experiment type
Account targeting
© This Aws account | (O Multiple accounts
Target AWS resources within this AWS account. Target AWS resources from this AWS account and specified AWS accounts

(target accounts).

Figure 12.3 — The template details such as the description, name, and account target

5. Inthe next step, we need to define our actions and targets. This is the heart of the chaos experiment:

* Targets are the groups of resources (for example, EC2 instances, RDS clusters, or Auto
Scaling groups) that we will run our experiment against

* Actions are the actions, such as terminating an instance, triggering an RDS failover, or injecting
an insufficient instance capacity error into an Auto Scaling group when it tries to scale out

The following screenshot shows the interface before we start creating targets and actions:

Step 1

@ Specify template details Specify actions and targets
Step 2
(® Specify actions and targets Actions and targets o
Step 3 Actions (0) Targets (0)

Configure service access

Step 4

Configure eptional settings
=+ Add action + Add target

Step s
Review and create

Experiment options

Empty target resolution mode
Select the behavior of the experiment if the target resolution returns an empty set.

[Fail v

Figure 12.4 - Chaos experiment template wizard showing the targets and actions (currently empty)

6. Welll first create a new target for our experiment, so select the + Add target button to open
up the target creation wizard.

267

268

Testing the Resilience of Your Infrastructure and Architecture with AWS Fault Injection Service

In the target creation wizard, define the following properties for our target:

= Name is the name of our target. Use something descriptive, such as RDS-Cluster.

= Resource type defines the type of resource we are targeting, such as an RDS cluster or EC2
instance. Select aws:rds:cluster here.

We then need to define how to select our targets under Target method. We can either directly
provide the resource IDs (i.e., the ARNs of the cluster we want to target) or select them via a
tag. For this example, we'll use the explicit naming of each resource using the resource IDs.

Under Resource IDs, select the previously created RDS cluster. It should start with the
prefix aurora-cluster-demo.

Under Selection mode, choose All. The selection mode lets us define how the resources that
are targeted are selected. With the All option, the defined action (for example, the database
failover) will run against every database cluster in this target group. With the Count option,
you can randomly select up to a certain number of resources that are part of this target, and
with the Percentage option, you can have AWS FIS choose a percentage of resources as the
target. The count and percentage method are useful if you want to simulate something such as
60% of your instances terminating.

You can view the selected options in the following screenshot:

Add target X

Specify the target resources on which to run your selected actions. Learn more [?

Name

[RDS-Cluster]]

The name must have 1 to 64 characters

Resource type

L aws:rds:cluster v

Target method

-
° Resource |1Ds () Resource tags, filters and
parameters

Resource IDs

[Se!ecta:‘esource 1D v l

[aurora-cluster-demo / cluster-AAQESU7YMPVBKNZABITPKCUILU X]

Selection mode

[Al v)
<=

Figure 12.5 - Target selection wizard for our chaos experiment template

Introduction to chaos engineering and chaos experiments

With our targets defined, we can go ahead and create the actions that we want to run against
these targets:

* Name defines the name of our action. Use something descriptive, such as Failover-RDS,
in this example.

* Action type defines the kind of action we want to carry out. Actions are grouped by their
target service. In the first dropdown, select RDS since we want to trigger a database failover.
In the second dropdown, select aws:rds:failover-db-cluster as the action.

* With Start after, you can define an action that needs to be finished before this action can
run. This can be useful when building scenarios where failures build upon each other. We'll
leave this empty since this is our only action in this experiment.

* For Target, select our previously created target, called RDS-Cluster.

You can see the entire filled-out wizard in the following screenshot:

Add action X
Select an action to add to the experiment template. Learn more [?]

Name

[Failover-RDS J

The name must have 1 to 64 characters.

Description - optional

()

The description must have 1 to 512 characters.

Action type
The type of action to run on the target resources. Learn more [?

[RDS v J [aws:rds:failover-db-cluster v J

Start after - optional
Select any actions that must complete before this action can start. Otherwise, the action runs at the
start of the experiment.

[Select an action v]

Target
A target will be automatically created for this action if one does not already exist. Additional targets
can be created below.

[RDS-Cluster v]

Cancel (7

Figure 12.6 — Wizard for creating our action

269

270 Testing the Resilience of Your Infrastructure and Architecture with AWS Fault Injection Service

10. With this, we now have the structure of our chaos experiment defined. Your Actions and
targets pane should look like the following screenshot:

Specify actions and targets

Actions and targets inf

Actions (1) Hide details Targets (1) Hide details
Failover-RDS : RDS-Cluster
Action (}/_O aws:rds:cluster

aws:rds:failover-db-cluster

+ Add target
+ Add action

Figure 12.7 - Actions and targets after we have created our RDS failover scenario

11. We'll also need to select what should happen to this experiment if the target is empty. In this
example, we'll fail the experiment, so let’s select Fail in the dropdown under Empty target
resolution mode and click Next.

12. Next, we need to configure the service access. In order for AWS FIS to be able to carry out
the required actions against our resource, we need to create an IAM role that has the required
permissions. We can either let AWS FIS create a new role with the correct set of permissions for
us or specify a role if we already created one. Note that you generally don’t want to run AWS FIS
experiments with more permissions than required, so refrain from using your administrator
role or similar here.

For this example, we'll select Create new role for the experiment template to have AWS FIS
create a new role for us. AWS FIS will automatically generate a random role name with the
prefix AWSFISIAMRole -, as shown in the following screenshot. Click Next.

Introduction to chaos engineering and chaos experiments 271

Service access

FIS requires permission to conduct experiments on your behalf

© Create a new role for the experiment template

Service role name

[AWSFISIAMRole-1733773237943]

Figure 12.8 — Creation of the role that will be used to give AWS FIS the required IAM permissions

13. Next, we can configure optional settings.

The first optional setting we have is Stop conditions. We can use CloudWatch alarms to
automatically stop a chaos experiment if a certain threshold is used. For example, if you have
a metric that tracks the number of 5XX error codes returned to users, you could use this
metric to automatically turn off the experiment if a certain threshold is reached. This can be
very useful if you decide to run chaos experiments in production to avoid completely taking
down the application.

Since we don’t have this kind of metric in our scenario, we'll leave it empty, as shown in the
following screenshot:

Configure optional settings

Stop conditions info

Select stop conditions - optional

[Select a CloudWatch alarm v J

Figure 12.9 — The optional Stop conditions configuration

272 Testing the Resilience of Your Infrastructure and Architecture with AWS Fault Injection Service

14. AWS FIS can also generate a report of the chaos experiment in PDF format, which can be
used as evidence that resiliency testing was carried out. The PDF will be uploaded to an S3
bucket of your choice. For this example, we'll also leave this optional feature off, as shown in
the following screenshot:

Report configuration - new, optional info

AWS FIS generates experiment reports as evidence of resilience testing. Configure report settings so that a FIS experiment report is delivered to
an 53 bucket. You can download the PDF once the experiment is completed. FIS generates reports with an associated cost. See Amazon FIS
pricing [2

Report destination
Choose an 53 destination for the report. Ingestion and storage charges apply. See Amazon 53 pricing]

[Q bucket-name/prefix/ J View [?

Format: <bucket>/<optional-prefix-with-path>/

(@ Permissions required for FIS reporting (View permission details) X
To generate and store reports, ensure your FIS experiment IAM role has CloudWatch and S3
permissions. Learn more ik}

Embed CloudWatch metric snapshot graphs
You have the option to include snapshot graphs of Amazon CloudWatch metrics in the report by selecting a CloudWatch dashboard. The snapshot graphs will reflect
the experiment impact on your key metrics over a time period that you specify. CloudWatch request charges apply.

Figure 12.10 — Optional AWS FIS reporting feature turned off

15. Finally, AWS FIS allows us to specify an S3 bucket or CloudWatch Logs group to send the
logs from our chaos experiment. Here, we are going to check the checkbox next to Send to
CloudWatch Logs to send them to CloudWatch, and under Log group ARN, use the Browse
button to select the log group that was previously created by the Terraform script. It should be
called /chaos-experiments. Your wizard should then look like the following:

¥ Logs
Destination - optional

The destination that receives the experiment log data. Amazon FIS doesn't charge for sending the logs. However, ingestion and sterage charges apply based on the
destination.

[7] send to an Amazon 53 bucket

Send to CloudWatch Logs

Log group ARN

[O I - o;-oroup:/chaos-experiments:* X) (view [2) (Browse)
Log version

[Version 2 v]

Figure 12.11 - Log delivery settings for our chaos experiment

Introduction to chaos engineering and chaos experiments

16. With the logs configured, click the Next button to get to a final summary page. At the bottom

of the summary, click Create experiment template to create our new experiment template.
During this, you’ll be prompted to confirm that you want to create an experiment without a
stop condition, as shown in the following screenshot:

Create experiment template X

£\ You have not specified a stop condition for your experiment template. A stop
condition can help to prevent your experiment from going out of bounds by
stopping it automatically. Learn more [4

To confirm that you want to create an experiment template without a stop condition,
enter create in the field:

[create]

Cancel Create experiment template

Figure 12.12 — Warning indicating that we are creating an experiment template without a stop condition

With our experiment template created, we are ready to run the experiment. To do this, follow these steps:

1.

Open up the RDS console in a new tab by searching for it in the search bar or opening it
up using this link: https://eu-central-1.console.aws.amazon.com/rds/
home?region=eu-central-1#databases. Well use this new tab to see the actual
failover happen.

In the AWS FIS console, navigate to the Experiment templates entry in the left-hand menu,
where you should see your previously created experiment template. Select it, as shown in the
following screenshot, and click the Start experiment button:

Experiment templates (1/7) info Last updated on December 09, 2024, 21:58:17 (UTC +01:00)
@ (Actions ¥) (Start experiment) Create experiment template

[Q Filter experiment templates J 1 o]

Name ¥ | Experiment template ID v | Experiment template ARN ¥ | Schedules

arn:aws:fis:eu-
RDS Failover EXTAvtFu3jgP2h9Ds central-1: N - periment- -
template/EXTAvtFu3jgP2h9DS

Figure 12.13 - Selection of our experiment template to create a new experiment from

273

https://eu-central-1.console.aws.amazon.com/rds/home?region=eu-central-1#databases
https://eu-central-1.console.aws.amazon.com/rds/home?region=eu-central-1#databases

274 Testing the Resilience of Your Infrastructure and Architecture with AWS Fault Injection Service

3. Inthe next dialog, click the Start experiment button. You’ll have to once again confirm that you
want to start the experiment without a stop condition, as shown in the following screenshot:

Start experiment X

/N You are about to start your experiment, which might perform destructive
actions on your AWS resources. Before you run fault injection experiments,
review the best practices and planning guidelines. Learn more [

To confirm that you want to start the experiment, enter start in the field:

=)

Cancel Start experiment

Figure 12.14 — Confirmation that you want to run the experiment without a stop condition

4. While the experiment is now running, you can navigate over to RDS. Here, under your database
clusters, you'll see the database failover happening, as shown in the following screenshot:

Databases (3) @ Group resources l@J Modify
[Q, Filter by databases]
DB identifier A | Status v | Role ~
O aurora-cluster-demo @ Failing over Regional c...
O aurora-cluster-demo-0 ® Available Writer ins...
O aurora-cluster-demo-1 @ Available Reader ins...

Figure 12.15 — RDS console showing the cluster failover triggered by our chaos experiment

5. Once the experiment is finished, the AWS FIS console will show you a summary of actions
(under Actions summary), how long they took to carry out, and what resources were affected
(under Resources), as shown in the following screenshot:

Introduction to chaos engineering and chaos experiments

Actions summary (1)

Action name ¥ Status ¥ Action ID v Start time v End time v
? @ Comp ;
RDS-Failover aws:rds:failover-db-cluster December 09, 2024, 22:06:41 (UTC +01:00) December 09, 2024, 22:06:41 (UTC +01:00)

leted

Resource overview

Resources targeted Region Resource types
1 eu-central-1 1

Resources) @ G

[Q, Filter resolved targets] 1 8

Target information v | Resource type v \ Target name v J Account ID

arn:aws:rds:eu-

centraM:_(lusrer:aumra- aws:rds:cluster RDS-Cluster _

cluster-demo [2
Figure 12.16 - Summary of the actions and affected resources

6. Ifyou navigate to CloudWatch Logs and find the previously created log group (called /chaos-
experiments), you'll find a new log stream under it that contains the logs from the chaos
experiment run. It includes logs from all the stages, such as target resolution, actions starting,
and the experiment ending. You can see an example of the log file in the following screenshot:

/chaos-experiments > faws/fis/EXPR7ERnUSwIwIm4p2

Log events @ C Actions ¥) (Start tailing) Create metric filter

You can use the filter bar below to search for and match terms, phrases, or values in your log events. Learn more about filter patterns [Z

[CL Filter events - press enter to search } (m 1h 1(UTC timezone ¥] (Display ¥) &

> Timestamp | Message
No older events at this moment. Retry

@ 2024-12-09721:06:29.4862 {"1id": "EXPR7ERnU9wIwImdp2" , "log_type": "experiment-start", "event_timestamp":"2024-12-09721:06:29.486Z", "versio..

t]
"id": "EXPR7ERnUIwIwImdpz",
"log_type": "experiment-start”,
"event_timestamp": "2024-12-99721:06:29.486Z",

"version": "2"
"details": {
"experiment_template_id": "EXT2MYXWhPUMwiln",

"experiment_start_time": "2024-12-89721:06:13.6402"

}
}

Figure 12.17 - CloudWatch Logs group with the detailed log messages from our experiment run

275

276

Testing the Resilience of Your Infrastructure and Architecture with AWS Fault Injection Service

(R
Additional information

Under Experiments, you’ll find a button called Stop all experiments. This is a safety lever that
you can pull. It will terminate all running experiments and will prevent any new experiments
from being run (either started manually or automatically on a schedule) until you click the
Disengage safety lever button. This can be useful when experiments are running that are
threatening your production workload.

- J

With this, we have successfully created our first chaos experiment. You can have a look at this
documentation page to get an overview of all the actions that are available to you: ht tps://docs.
aws.amazon.com/fis/latest/userguide/fis-actions-reference.html.

When designing experiments, remember to make them realistic and adhere to a real-world scenario
that your architecture should be resilient to.

Summary

In this chapter, we learned how to implement chaos engineering experiments using AWS FIS. We had
a quick introduction to chaos engineering and chaos experiments before showcasing such a simple
yet powerful experiment with a database failover.

In the next chapters, we'll cover how we can manage more complex multi-account setups. We'll start
by introducing continuous deployment and continuous integration into our toolset.

https://docs.aws.amazon.com/fis/latest/userguide/fis-actions-reference.html
https://docs.aws.amazon.com/fis/latest/userguide/fis-actions-reference.html

Part 5:
Deployments at Scale

In the fifth part of the book, we discuss common patterns when dealing with deploying infrastructure
on AWS at scale. The part discusses patterns to design reusable Infrastructure-as-Code components
and continuously deploy your infrastructure using CI/CD tools.

Finally, we combine all the learnings of the book to see how the end-to-end deployment of an
application is handled.

This part contains the following chapters:
o Chapter 13, Deploying Infrastructure Using CI/CD Pipelines
o Chapter 14, Building Reusable Infrastructure-as-Code Components
o Chapter 15, Ensuring Compliance Using AWS Config and SCPs
o Chapter 16, Operating in a Multi-Account Environment

o Chapter 17, End-to-End Deployment of an Application

13

Deploying Infrastructure
Using CI/CD Pipelines

A common theme throughout this book has been the usage of infrastructure as code (IaC). We
have opted to describe and then automate the deployment of our infrastructure using tools such as
Terraform and CloudFormation.

But one treatment that is usually applied to modern applications - the concept of continuously building
and releasing the software — hasn’t been applied to our infrastructure so far.

This chapter starts with a short introduction to CI/CD followed by a practical guide to deploying the
Terraform scripts saved in a Git repository — hosted on GitHub - to our AWS environment.

In this chapter, were going to cover the following main topics:
« Introduction to CI/CD
o Connecting AWS and GitHub

o Creating a pipeline to automatically run Terraform deployments

So, let’s get started!

Technical requirements

Before following this section, please create an AWS account for yourself. You can sign up at aws .
amazon. com. A basic understanding of AWS - for example, knowing what a service is — will
be beneficial.

A basic understanding of IaC tools such as Terraform is beneficial. An understanding of version
control with Git is required. You’ll need to have Git set up on your local machine.

To follow the practical parts, a GitHub account is required.

http://aws.amazon.com
http://aws.amazon.com

280

Deploying Infrastructure Using CI/CD Pipelines

All scripts from this section can be found at the following GitHub link:

https://github.com/PacktPublishing/AWS-for-System-Administrators-
Second-Edition.

The CiA video for this chapter can be found at https: //packt.link/dpzgo

A short introduction to CI/CD

Continuous integration/continuous delivery (CI/CD) is a practice in software engineering. The idea
is that, instead of building (or integrating) our software project once every few months when releasing
a new version, we continuously build our software as new changes are added to the repository. CD
then takes these continually integrated changes and automatically prepares them for deployment and
can also automatically deploy a new version.

This practice of continuously updating software instead of only doing one big change every few months
helps with making our releases smaller and more manageable with a faster development cycle.

With IaC, we already treat our infrastructure the same way we would treat a software project. So, we
can also apply the same practice of CI/CD to our infrastructure code.

In this chapter, we'll cover an AWS service, AWS CodeBuild, to do the job of running a set of commands
on the new version of the code upon a change to the code in our version control system.

Automated deployment with Terraform and AWS
CodeBuild

Before we can get started with setting up our deployment infrastructure, we need to perform two
preliminary steps. First, we need to connect our GitHub account to our AWS account, and then we'll
need to set up a backend to save our Terraform state.

Connecting your GitHub account

In this walkthrough, we’ll store our code in a Git repository on GitHub and create a connection
between our AWS account and our GitHub account.

(R
Note

If you have previously used AWS, you might be familiar with its CodeCommit service for
creating Git repositories. In this book, we are using GitHub to host our Git repositories instead
of CodeCommit. This is because, in the summer of 2024, AWS announced that CodeCommit
would no longer be usable to new customers. You can see the announcement at the beginning of
the blog post here: https://aws.amazon.com/blogs/devops/how-to-migrate-
your-aws-codecommit-repository-to-another-git-provider/.

https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition
https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition
https://packt.link/dpzgo
https://aws.amazon.com/blogs/devops/how-to-migrate-your-aws-codecommit-repository-to-another-git-provider/
https://aws.amazon.com/blogs/devops/how-to-migrate-your-aws-codecommit-repository-to-another-git-provider/

Automated deployment with Terraform and AWS CodeBuild

Creating a new repository for our code

We'll first need a new repository to hold our Terraform code in. To create a new repository, follow
these steps:

1. Navigate to github.com and log in to your account

2. Onyour dashboard, click the green New button to get to the dialog for creating a new repository:

= o Dashboard

9 sQudrks ~

Top repositories

Find a repository...

Figure 13.1 - Interface to create a new repository in GitHub

3. In the repository creation dialog (see the following figure), you’ll need to provide a name
and repository type. For this example, the name is infra-demo and the repository type
is Private. Leave the Add a README file box unchecked since we won't need a README
file for this demo application. Under Add .gitignore, in the dropdown, search for and select
Terraform. This will make GitHub include a . gitignore file that already ignores the typical
Terraform-specific files.

281

http://github.com

282 Deploying Infrastructure Using CI/CD Pipelines

With the settings done to your liking, click the green Create repository button in the
lower-right corner.

Create a new repository

A repository contains all project files, including the on history. Already have a project repository

elsewhere? Import a rep

Required fields are marked with an asterisk (*).

Repository template

No template ~

contents.

Repository name *

950u4rks - / infra-demo

@ infra-demo is available.
Great repository names are short and memorable. Need inspiration? How about curly-meme ?

Description (optional)

Initialize this repository with:

Add a README file
This i

Add .gitignore

.gitignore template: Terraform -

rom a list of ter

Figure 13.2 — The dialog to create the new GitHub repository

4. With the repo configured, go ahead and clone it to your local machine. To do so, run the
following command in your console. Don't forget to replace the placeholders with your GitHub
username and repository name:

git clone https://github.com/<your-git-user>/<your-git-repo-
name>

Automated deployment with Terraform and AWS CodeBuild 283

5. You should see a new folder with the same name as your repository.

With the repository that will hold our project created successfully, we can next create the connection
that will allow the Code* services to pull from this repository.

Creating the connection between GitHub and AWS

We are now going to create a connection between AWS and our GitHub account. To do this, follow
these steps:

1. Before you begin, make sure that you are logged in to your GitHub account.

2. To create the connection, open the AWS console in your web browser and search for CodeBuild.
You'll be redirected to the Developer Tools service. In the left-hand navigation bar, select
Connections under Settings, as shown in the following screenshot:

Developer Tools X
Settings

» Source * CodeCommit

» Artifacts » CodeArtifact

» Build ¢ CodeBuild

» Deploy » CodeDeploy

» Pipeline CodePipeline

v Settings

Notification rules

Connections

Q, Go to resource

k] Feedback

Figure 13.3 = The Connections settings item in the Developer Tools service

284

Deploying Infrastructure Using CI/CD Pipelines

3. Inthe menu, select Create connection at the top right to get to the dialog to create a new connection.

4. In the first field, we need to select the repository hosting provider we want to connect to. Aside
from GitHub (and GitHub Enterprise), we could also connect to GitLab (both the Saa$S service
and a self-hosted instance) and Bitbucket. For our demo, we‘ll use GitHub, so select GitHub
(not GitHub Enterprise Server) as the provider.

5. Type a name for your connection. In this example, we'll use GitHubTest. Both the provider
choice and name are shown in the following screenshot:

Create a connection e

Select a provider

Bitbucket © GitHub GitHub Enterprise Server

GitLab GitLab self-managed

Create GitHub App connection info

Connection name

| GitHubTest]

» Tags - optional
Connect to GitHub
Figure 13.4 — Choice of provider and connection name
6. Click Connect to GitHub and you'll be redirected to GitHub, where you'll need to grant
the AWS Connector for GitHub access to your GitHub account, as shown in the following

screenshot. To do the authorization, click Authorize AWS Connector for GitHub. This will
grant the integration from AWS the ability to see your repositories.

Automated deployment with Terraform and AWS CodeBuild

AWS Connector for GitHub by
permission to:

ct on your behalf

Authorize AWS Connector
for GitHub

https:/jredirect.codestar.aws

Figure 13.5 — Authorization of the AWS Connector for GitHub

You'll be redirected back to AWS where we can now install an app. This app will use your
established connection between AWS and GitHub to create a new connection to a specific set
of repositories using a bot integration. On the interface (shown in the following screenshot),
click the Install a new app button:

Developer Tools > Connections » Create connection

Connect to GitHub

GitHub connection settings info

Connection name

GitHub-Connection

App installation - optional

Install GitHub App to connect as a bot. Alternatively, leave it blank to connect as a GitHub user, which can be used in AWS CodeBuild
projects

Q or Install a new app

» Tags - optional
Connect

Figure 13.6 — Dialog to install the GitHub app

285

286 Deploying Infrastructure Using CI/CD Pipelines

8. You'll again be redirected to GitHub. On GitHub, you'll be prompted to select where you want
to install the app. The choice here is your personal account or any GitHub organization that
you are a part of (PacktPublishing, in my example). Select your personal username (sQud4rks,
in my case), as shown in the following screenshot:

Install AWS Connector for GitHub

Where do you want to install AWS Connector for GitHub?

9 sQudrks

8 PacktPublishing

Figure 13.7 - GitHub location selector for the app

9. Next, we need to install and authorize the AWS connector. This is where well select which
repositories the integration should have access to. We'll grant the integration access only to
the previously created repo. To do this, select Only select repositories and, in the dropdown
below, select your previously created repository — sQu4rks/infra-demo, in my example - as
shown in the following screenshot. Then, click the Install & Authorize button, which will
redirect you back to AWS.

Automated deployment with Terraform and AWS CodeBuild 287

Install & Authorize

Install & Authorize on your personal account Marcel Neidinger

o

for these repositories:

O All repositories

2 sQudrksfinfra-demo
with these permissions:

Read access to issues and metadata

Read and write access to administration, code, commit statuses,
pull requests, and repository hooks

Install & Authorize |

to https:ffredirect.codestar.aws/return

Figure 13.8 - Repository selection for our connection to GitHub

10. Back in the AWS console, we can now use our newly created app. The App Installation option
should already be filled out with a number so you can click Connect to finish the process.

With the connection between GitHub and AWS established, we can now create the necessary
infrastructure for Terraform.

288

Deploying Infrastructure Using CI/CD Pipelines

Setting up a Terraform backend

So far, we have always run Terraform from our local machine as this made one thing very easy: state
management. The Terraform state is a list of the state of your resources. This means that the state
keeps track of which resources have been created as part of the Terraform project and how they are
configured. When changing an attribute in Terraform or adding a new resource, the plan command
will determine how the state — and thus the AWS infrastructure - needs to be altered.

(R
Additional information

This state isn't something magical. Have a look at any of the previous examples where we used
Terraform to create resources. You'll find a file called terraform. t £state in the directory.
This file is in JSON format and contains the list of resources that are deployed and managed
by Terraform for that project.

- J

But how do we keep this state file in sync if we have multiple people working on the same infrastructure?
And how do we make sure that the CI/CD workers deploying our infrastructure have the correct
version of the state file to use?

This is where remote backends in Terraform come into play. The backend is a Terraform construct that
is used to define where the state file should be retrieved from and saved. If we do not define a backend,
Terraform will use the default backend, which is local. The local backend stores all information in a local
file. There is a variety of backends available. You can have a look at all the options here: https://
developer.hashicorp.com/terraform/language/backend. In this example, we'll
be using the S3 backend. With this backend, the state file will be stored on and retrieved from S3. In
addition, we are going to use the NoSQL serverless DynamoDB for locking the state file.

Locking in this context means that only one deployment (be it from a human or an automated CI/
CD pipeline) can access and modify the state file at the same time. This is useful for consistency so
that we don't get two parallel updates messing up the state.

(R
Additional information

This book has also introduced CloudFormation and the CDK, which generates CloudFormation
in the background, as IaC tools. In CloudFormation, state management is handled by the tool
itself, and we don't need to configure a remote backend. This is why we cover Terraform in
this chapter.

- J

To be able to use the S3 backend in our projects, we'll need two resources: an S3 bucket and a DynamoDB
table for storing our locks. We'll now use Terraform to create these resources. Notice that you only
need to do this once for an account and that you can then use the same bucket and DynamoDB table
for multiple projects.

To set up the required infrastructure, follow these steps:

1. Open a code editor such as Visual Studio Code and create a new file called setup tf.tf£.

https://developer.hashicorp.com/terraform/language/backend
https://developer.hashicorp.com/terraform/language/backend

Automated deployment with Terraform and AWS CodeBuild

In the newly created file, we'll first set up the Terraform provider. These concepts were covered
in more depth in Chapter 1, Setting Up the AWS Environment:

terraform {
required providers {

aws = {
source = "hashicorp/aws"
version = "~> 5.0"
}
}
}
provider "aws" {
region = "eu-central-1"
}
Next, we create the bucket that will hold our state file:
resource "aws_ s3 bucket" "terraform state bucket" {
bucket = "mn-tf-state-bucket"
}

Next, we'll enable bucket versioning. This tells S3 to version any file in this bucket. If someone
accidentally deletes the state file from S3, this means that the file can be recovered. We'll do
this using the aws_s3 bucket versioning resource type:

resource "aws_ s3 bucket versioning" "terraform state" {
bucket = aws_s3 bucket.terraform state bucket.id
versioning configuration {
status = "Enabled"

}

And finally, we can create the DynamoDB table that will hold our lock. We'll use the serverless
variant of DynamoDB (via the PAY PER REQUEST option) and define a table schema with
a single attribute. This attribute needs to be called LockID and be of the S type (for string):

resource "aws dynamodb table" "terraform state lock table"
"mn-tf-state-table"
"PAY PER REQUEST"

name

billing mode

hash key = "LockID"
attribute {

name = "LockID"

type = "S"
}

289

290 Deploying Infrastructure Using CI/CD Pipelines

6. With our script done, we can start deploying the infrastructure. To do this, open up your console
and first initialize the Terraform project. This will download the required AWS Terraform
provider for you:

terraform init

7. Once the initialization is done, you can create the infrastructure using the following command:

terraform apply

With our DynamoDB table and S3 bucket set up to store our state, we can finally deploy our code.

Deploying your code

With the connection and state management handled, we can get started with creating our CodeBuild
project to deploy our infrastructure upon changes in our source repository.

To do this, follow these steps:

1. Open up the AWS console and search for CodeBuild. In the left navigation, navigate to
Build projects. Here, you'll find a list of all your build projects. In the top-right corner, click
the Create project button to create a new project, as shown in the following screenshot:

Developer Tools X Developer Tools > CodeBuild > Build projects @
CodeBuild [c]
Build projects info
» Source « CodeCommit T |
| Cc Actions ¥ Create trigger View details Start build ¥ Create project.
» Artifacts « CodeArtifact ———
|a Your projects ¥ 1 (o]
¥ Build » CodeBuild =
B so Latest build
Getting started Name v sl Repository iz Description Last Modified
provider status
Build projects
Build history
—_— No results
Report history There are no results to display.

Compute fleets New

Account metrics

¥ Related integrations
Jenkins [
GitHub Actions [2 New

GitLab runners [% New

Figure 13.9 — Overview of our current build projects

Automated deployment with Terraform and AWS CodeBuild

2. We first need to define a name for our build project. In this example, we‘ll be using
TerraformDeploy, as shown in the following screenshot:

Create build project

Project configuration

Project name

TerraformDeploy|

A project name must be 2 to 255 characters. It can include the letters A-Z and a-z, the numbers 0-9, and the special characters - and _.

» Additional configuration
Description, public build access, build badge, concurrent build limit, tags

Figure 13.10 - The name of our build project

3. Next, we need to configure our source code provider. Select GitHub as the source provider.
Then, select Custom source credential and GitHub App as the credential type. This will allow

us to use the GitHub app integration we previously configured. Under Connection, select the
previously created GitHub connection.

4. We can then select the repository to pull from. Since we want a repository in our account as
opposed to one for a public GitHub repo, we'll select Repository in my GitHub account.

291

292 Deploying Infrastructure Using CI/CD Pipelines

5. In the search menu, type the first few characters of your previously created GitHub repo
(infra-demo, in our example) and select it. Leave Source version empty. This optional field
would allow you to scope the project to certain branches or tags, but we want our project to
run on any commit to any branch. You can find the filled-out information for this section of
the project definition in the following screenshot:

¥ Source Add source |

Source 1 - Primary

Source provider

GitHub v
Credential
(O Default source credential © Custom source credential
Use your account's default source Use a custom source credential to
credential to apply to all projects override your account's default settings
Credential type
O GitHub App () OAuth app () Personal access token
Connect project to GitHub using Connect project to GitHub using Connect project to GitHub using a
an AWS managed GitHub App an OAuth app personal access token
Connection

You can create a new GitHub connection by using an AWS managed GitHub App

Q arn:aws:codeconnections:eu-central-1:317322385701:connectit X ‘ ‘ c ‘
Repository
© Repository in my GitHub O Public repository (O GitHub scoped webhook
account
Repositary
|Q https://github.com/sQudrks/infra-demo X| ‘ C ‘

Source version - optional Infa
Enter a pull request, branch, commit ID, tag, or reference and a commit ID.

» Additional configuration
Git clone depth, Git submodules, Build status config

Figure 13.11 - Source configuration

Automated deployment with Terraform and AWS CodeBuild

6. For the primary source webhook, we‘ll select it to rebuild on every code change and to trigger

a single build, as shown in the following screenshot:

¥ Primary source webhook events info

Webhook - optional Info [

Rebuild every time a code change is pushed to this repository

Build type

(O Batch build

Triggers multiple builds as single execution

O Single build
Triggers single build

» Webhook event filter groups Add filter group ‘

A build is triggered if any filter group evaluates to true, which occurs when all the filters in the group evaluate to true.

P Additional configuration

Figure 13.12 - Webhook event configuration for our CodeBuild project

Next up is the environment. This configures the compute that will be used to run the command
we specify in our CodeBuild project.

We'll choose On-demand as the provisioning model. This will let AWS automatically start
and stop instances that will run our commands using the on-demand pricing model, where
we pay for the time used.

Environment image defines the Docker image that will be used to run our commands. We'll
leave this as Managed image. A custom image could be used if you have very specific build
dependencies (such as internal libraries) that can't be easily installed using an install script.

For Compute, select EC2 to tell CodeBuild to run our code on an EC2 instance instead of
Lambda. Depending on the size of your build project, you could also use Lambda to provide the
required compute capacity. We'll also leave the Use GPU-enhanced compute checkbox unchecked
since we don't need a (more expensive) GPU-based instance to run our Terraform commands.

293

294

Deploying Infrastructure Using CI/CD Pipelines

10. We'll leave the operating system as Amazon Linux, the runtime as Standard, and use the
default image version for this demo. If you have specific build dependencies or setup scripts
that are written for a different Linux distribution (such as Ubuntu), you can also select this
here, but usually, you won't need to change these settings. The full configuration can be seen
in the following screenshot:

v Environment

Provisioning model Info [

© oOn-demand (O Reserved capacity
Automatically provision build infrastructure in response to Use a dedicated fleet of instances for builds. A fleet's
new builds. compute and environment type will be used for the
project.

Environment image

O Managed image () Custom image
Use an image managed by AWS CodeBuild Specify a Docker image
Compute
O Ec2 O Lambda
Optimized for flexibility during action runs Optimized for speed and minimizes the start up time of

workflow actions

Operating system

‘ Amazon Linux v ‘
Runtime(s)

‘ Standard v ‘
Image

‘ aws/codebuild/amazonlinux-x86_64-standard:5.0 v ‘

Image version

‘ Always use the latest image for this runtime version v ‘

[] Use GPU-enhanced compute

Figure 13.13 - The compute and instance configuration of our environment setup in CodeBuild

Automated deployment with Terraform and AWS CodeBuild

11. CodeBuild will need AWS credentials when running our code. These will be the credentials
that are also used to run our Terraform commands. To do so, we need to provide a service role.
Select New service role. CodeBuild will automatically create a new name for the role based on
how you named the project.

Service role
© New service role O Existing service role
Create a service role in your account Choose an existing service role from your account
Role name

codebuild-TerraformDeploy-service-role

Type your service role name

» Additional configuration
Timeout, privileged, certificate, VPC, compute type, environment variables, file systems, auto-retry, registry credential

Figure 13.14 - The definition of our service role that will be used to run our Terraform code
12. Next, we need to define the steps that will be carried out when running this project. We'll explain
the buildspec format more later in this chapter. For now, select Use a buildspec file and leave

the Buildspec name - optional field empty as we‘ll use the default name of buildspec.yml.

v Buildspec

Build specifications

O Insert build commands @ Use a buildspec file
Store build commands as build project configuration Store build commands in a YAML-formatted buildspec file

Buildspec name - optional

By default, CodeBuild looks for a file named buildspec.yml in the source code root directory. If your buildspec file uses a different name or
location, enter its path from the source roat here {for example, buildspec-two.yml or configuration/buildspec.yml).

Figure 13.15 - Buildspec configuration

295

296

Deploying Infrastructure Using CI/CD Pipelines

13. Finally, we need to configure the artifacts and logs. Artifacts are the result of our build jobs, such
as test coverage reports or the results from unit tests. We don't have these artifacts in our current
project, so we'll choose No artifacts as the type. For logs, we'll stream all the logs from our build
jobs to CloudWatch Logs into its own log group. CodeBuild should already pre-populate the
group name for you based on the project name, as shown in the following screenshot:

Artifact 1 - Primary

Type

No artifacts v

You might choose no artifacts if you are running tests or pushing a Docker image to Amazon ECR.

» Additional configuration
Cache, encryption key

v Logs

CloudWatch

CloudWatch logs - optional
Checking this option will upload build output logs to CloudWatch.

Group name - optional

‘ aws/codebuild/TerraformDeploy ‘

The group name of the logs in CloudWatch Logs. The log group name will be /aws/codebuild/<project-name> by default.

Stream name prefix - optional

The prefix of the stream name of the CloudWatch Logs.

S3

[J) s3 logs - optional
Checking this option will upload build output logs to S3.

Figure 13.16 — Artifacts and logs for our CodeBuild project

14. Click Create build project to create a new build project and be redirected to the overview
page for this build project.

Automated deployment with Terraform and AWS CodeBuild

With the configuration of our build project done, it is time to push some resources and see the work
in action. To do this, we'll need to first introduce the previously mentioned buildspec file. A
buildspec file defines the different phases of a build and which commands should be run there.
You can think of it like a script where each command is run one after another. We can store this file
in our repository and CodeBuild will read it upon every execution of the project. So, let’s create a
buildspec file and Terraform scripts to run.

To do this, follow these steps:

1.

Open up the repository you previously cloned to your computer in a text editor of your choice
(such as Visual Studio Code), and create a new file called buildspec.yml.

In the buildspec.yml file, well first specify the version of the buildspec standard we want
to use — version 0.2, in this case:

version: 0.2

Next, we define a list of phases. The first phase, the install phase, is where we can set up any
custom software we need to run our commands. In our case, this custom software is Terraform.
The following code will use wget to download the 1.10.3 version of Terraform for Linux to
the machine, unzip the file, and then move it to the bin folder so that it can be used later. To
verify that everything works, we then run a terraform --version command. You can
visithttps://developer.hashicorp.com/terraform/install to find the latest
version of Terraform and change the following URL accordingly:

phases:
install:
commands :

- wget -O terraform.zip https://releases.hashicorp.com/
terraform/1.10.3/terraform 1.10.3 linux amdé64.zip

- unzip terraform.zip
- mv terraform /usr/local/bin/
- terraform --version

Additional information

The project will fail if any of the commands return an error code. So, if something goes wrong
with the Terraform installation shown earlier, this phase will exit with an error code due to the
terraform --version command exiting with an error code.

4. Inthe next stage, the pre_Dbuild stage, we'll initialize Terraform and also run validation on

our Terraform files to check that they are syntactically correct:

pre_build:
commands :
- terraform init
- terraform validate

297

https://developer.hashicorp.com/terraform/install

298 Deploying Infrastructure Using CI/CD Pipelines

5. Now, we come to the build command. This section will run terraform plan to generate
a new plan. If the push was on our main branch, it will also run terraform apply on
the previously created plan:

build:
commands :
- terraform plan -out=out.tfplan
- if [$CODEBUILD_WEBHOOK_EVENT = "PUSH"] && [
$SCODEBUILD WEBHOOK HEAD REF = "refs/heads/main"]; then

terraform apply -auto-approve out.tfplan; fi

6. With our buildspec done, it is time for us to write the Terraform code that will be run by
the project. For this example, we'll use very simple Terraform code that just creates a new S3
bucket. However, we need to use our new S3/DynamoDB backend for the state file, so let’s first
set this up. Create a new file called backend. t£.

7. Inthebackend. tf file, configure Terraform to use the S3 backend. Remember to change the
name of your bucket and DynamoDB table, as well as the Region, to the one you used when
setting up this infrastructure previously:

terraform {
backend "s3" {

bucket = "<insert your state bucket name>"
key = "terraform.tfstate"

region = "eu-central-1"

dynamodb table = "<insert your DDB table name>"

}

8. Next, we can configure our providers. A more detailed explanation of what is happening here
can be found in Chapter 1, Setting Up the AWS Environment:

terraform {
required providers {

aws = {
source = "hashicorp/aws"
version = "~> 5.0"

}

provider "aws" {
region = "eu-central-1"

Automated deployment with Terraform and AWS CodeBuild

9. Finally, we can create a file called main. tf. In main. t £, we'll define all the resources that
we want to create with this pipeline. In this simple example, we'll only use it to create a new S3
bucket. To do so, add the following code to the file:

resource "aws_s3 bucket" "pipeline bucket" {

bucket = "<insert a new unique bucket name>"

}

10. Your directory should now look like this:

L— Infra-Demo/
— .gitignore
— backend.tf
— buildspec.yml

— main.tf

L— provider.tf

11. We'll now add these changes to our Git commit, commit them, and then push the changes to
our GitHub repository. First, add all the files to our commit using the following command.
You need to run this in the directory of your Git repository:

git add .

12. Next, commit it:

git commit -m "Initial version of infra"

13. Then, we can push it:

git push --set-upstream origin main

With our changes committed, our pipeline will now start to run. Navigate back to the AWS console and,
in your build project under Build history, you should see a new build run with a status of Pending.
The following figure shows the details of the build. As you can see, the Phase details tab shows you the
names of the different phases that we defined in the buildspec file (such as INSTALL, PRE_BUILD,
BUILD, etc.) as well as their status.

299

Deploying Infrastructure Using CI/CD Pipelines

TerraformDeploy:7516a14c-aa83-4f32-95a3-6a4db2b8b7ch

St bulla Ditug bulls | | Pty beid

Build status
Aatin Insiater [Ressshcd snnrrn serinn
@ succceded feat 1B amia ildcu central 1:31 7322385701 buid Temal
amibuplayTE16a14c 3383 4132 9533 5a8d0208L T ek
Stan tme Endtme Buk nutiser Roparts

Tar 75, P04 HIET PR QLT KD

Dhar 25, 224 TG PH LTE T

a

 Terrmfrmiepioyg-terraform_plan

Build loge Raport Duild dutalls | Ascerce sailization
[Statu Contert Duratien Start time et time

ST @ sucernded o et 75, 2004 1007 P (UITCHT 00 e 215, 202 1001 P UTE 100}
quruen @ surrended Bl s Ter 23, 7004 1CHIT A (LT 100 e 25, I WNZ B LT 100}
[@ ey e 7, 3004 10002 B4 QUITC 1T 003 (e 18, 2024 1007 £74 T 1100}
TR (1AL SEAIRCT &5 o Sy Twer 75, A 1EHIR PN |LITE 4100 Clme 2%, 3024 16602 74 {UTE 11200
IHSTALL @ Surremctert 2 T 33, 3004 1002 P [LITE T 60 e 33, 024 1002 B4 {UTE 4100}
PRE_BLILD B Sursenddert s Dp 33, 3004 1602 P (LITE+.00) Do 23, 3004 1003 B4 {UTCH 00}
BULD @ surccedad EP D 2%, 2024 1002 PM UTC+100) Des 25, 2024 16602 FM {UTC+ 100}
FOST_BULD @ surceeded 1 st Dler 2, 2024 1002 PH UTCHT00) Dec 25, 2024 15602 FM {UTC+ 100}
UPLOOD_ARTIFACTS D sucreded 1z Diec 25, 2024 162 P IUTCH100) Dec 25, 3024 1002 P UTCH 0}
FINALIING B surcraded 1 e 25, 3024 1002 PM IUTCHT 00 e 25, 2024 10H0Z B (UTCH 00}
COMPLETED B surzeaded Dee 25, 2024 TEHEZ PH IUTCHTOG)

Figure 13.17 - Build overview

Build logs will show you the output of each of the stages. And if we navigate to S3, we can verify that
the bucket we specified was indeed created.

With this, we have successfully connected GitHub with AWS and created a continuous deployment
of our infrastructure.

Summary

In this chapter, we have covered the basics of CI/CD before creating an actual CI/CD project for
provisioning infrastructure on AWS. We saw how we can connect AWS to have access to repositories
in our GitHub account and how we can then use CodeBuild to run a set of steps every time the source
code in the repository changes.

In the next chapter, we'll see how we can scale IaC across an organization by building reusable modules
that can then be deployed via CI/CD pipelines.

14

Building Reusable
Infrastructure-as-Code
Components

Throughout the previous chapters, we have seen how Infrastructure as Code (IaC) can be leveraged
to build up the infrastructure we want to deploy in our AWS account in a reproducible manner.

Especially when you are operating multiple workloads within your account, you’ll have common
patterns that are shared across the workloads. Maybe each workload should have the same general
VPC setup, or you want a standardized configuration for your S3 buckets and their integration into
the CloudFront CDN. We could copy and paste the [aC code between different workloads; however,
this makes it hard to track where pieces of infrastructure came from (are they custom or provided
by a component?), and if we want to update a shared configuration, it becomes even more difficult,
since for every workload where the code was copied and pasted, we would need to update it manually.

This is where IaC components come into play. Both CDK and Terraform allow us to package a set
of resources into reusable components that can be shared across teams. Besides reducing the time it
takes to write infrastructure - since, for example, every DevOps engineer in every workload team
doesn’t have to re-implement the same standardized VPC based on an architecture sketch, we can
also ensure consistency between different workloads.

This standardization makes it easier for engineers to pick up work in different teams since they already
know the underlying standards that have been used for these basic components.

In essence, your IaC components can become a codification of your enterprise architecture and other
architectural best practices.

In this chapter, we're going to cover the following main topics:

o A short introduction to reusable [aC components

« Writing and using modules in Terraform

302

Building Reusable Infrastructure-as-Code Components

o Writing and using constructs in CDK

Technical requirements

Before following this section, please create an AWS account for yourself. You can sign up at aws .
amazon. com. You should also have:

o A basic understanding of AWS - for example, what a service is — will be beneficial.
o A basic understanding of Python will help with the programming-based sections of this chapter.
o A basic understanding of Terraform will be beneficial

o A basic understanding of the Linux command line will help you follow along with this chapter.
You'll also need the following software installed on your system:

o Python version 3.8 or later

o Node.js version 14.15.0 or later

Both of these version requirements are as at the time of writing, in January 2025. You can check the
following links for the required versions:

o For Python: https://boto3.amazonaws.com/vl/documentation/api/latest/
guide/quickstart.html#install-or-update-python

o ForNodejs:https://docs.aws.amazon.com/cdk/v2/guide/getting started.
html#tgetting started prerequisites

All scripts from this section can be found at the following GitHub link:

https://github.com/PacktPublishing/AWS-for-System-Administrators-
Second-Edition

The CiA video for this chapter can be found at https://packt.link/0k£fIX

An introduction to reusable components

Before we can get started with writing modules in Terraform or constructs in CDK, we need to think
about what a reusable component is from a conceptual point of view. A component is a reusable set
of pieces of infrastructure resources (such as an EC2 instance) that are deployed together to provide
some infrastructure to a workload. A component itself usually does not host a workload. It provides
the infrastructure that your workload will run on.

http://aws.amazon.com
http://aws.amazon.com
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html#install-or-update-python
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html#install-or-update-python
https://docs.aws.amazon.com/cdk/v2/guide/getting_started.html#getting_started_prerequisites
https://docs.aws.amazon.com/cdk/v2/guide/getting_started.html#getting_started_prerequisites
https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition
https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition
https://packt.link/0kfIX

An introduction to reusable components

When designing these components, it is best to analyze the architecture of your workloads and how
they are built up. What commonalities do they share in terms of the infrastructure components (such
as EC2 instances or S3 buckets) and their configuration? Do they all run in a VPC that is always
configured with a private and public subnet per Availability Zone? Do you have a classic three-tier
architecture with a load balancer in front of a set of EC2 instances that use a database provided
by RDS in the background? Do you have to configure your logging in a certain way because of
compliance requirements?

These common pieces of infrastructure would be prime candidates to put into a component that can
be shared among all workloads. Finding the right size for your component is tricky. If you make the
scope of your component too small, you'll end up just writing thin abstractions over existing resources.

Think about the Terraform code that configures an EC2 instance. If all your module is doing is
configuring an EC2 instance by passing through all the variables from the module to the resource, it
doesn’t add any value to have the component. This doesn't mean that a component must have multiple
resources. If your component configures your EC2 instance in a standardized way, sets up common
logging, configures sensible default security groups, enforces a standardized naming schema, and
configures other security defaults, then it makes sense to put this into a component.

The Terraform documentation from HashiCorp has a good litmus test to see whether what you are
designing should be a component/module or not:

If you have trouble finding a name for your module that isn’t the same as the main resource type inside
it, that may be a sign that your module is not creating any new abstraction and so the module is adding
unnecessary complexity.

Source: https://developer.hashicorp.com/terraform/language/modules/
develop

However, the other extreme, where your component is too wide in scope, can also be disadvantageous.
Think about a component that just deploys a whole landing zone plus a workload into your AWS
account. It sets up an account structure, configures and peers VPCs, deploys database services, configures
logging, deploys instances, sets up auto scaling, defines custom metrics, and configures backup. This
starts to sound like your entire workload, doesn’t it? The downside of having huge components that
configure many different areas of a workload is that you lose flexibility. What if workload B does not
need all the configured auto scaling? What if you don’t want backups enabled for a testing environment
but there is no way to disable it in the component?

Components should serve as building blocks for your eventual workload infrastructure. Besides
the naming test from the HashiCorp quote earlier, you can think about whether all the pieces of
infrastructure in your component serve the same purpose for the workload that should run on it.
Configuring a standardized RDS cluster and defining the logging and backup strategy for it is a perfect
use case for a component. If that component would then also configure EC2 instances, that would
not fit the scope of the component.

303

https://developer.hashicorp.com/terraform/language/modules/develop
https://developer.hashicorp.com/terraform/language/modules/develop

304 Building Reusable Infrastructure-as-Code Components

When defining which parts of an infrastructure to put into a component, here are some best practices
and guidelines:

Analyze your workloads and identify common patterns such as the network configuration or
the configuration of database clusters. These are examples of pieces of infrastructure that could
be standardized for all the workloads via [aC components.

Identify any infrastructure that always must be deployed in a certain standardized way -
often for compliance purposes. If you are following an enterprise architecture or a different
set of standards, this could be a source of such components. Here, it makes sense to provide
components that already follow the best practices or requirements.

Make your components small enough to be usable as building blocks for your workload
infrastructure. You can always compose multiple components into the infrastructure required
for your workload instead of putting all of it into one static and difficult-to-change component.

Make your components big enough to be an abstraction. A good check is the naming test from
HashiCorp - if you are having trouble coming up with a name for your resource that is different
from the main resource, it probably isn’t enough of an abstraction to warrant a component.

So, let’s next have a look at an example of a component and how we can implement this in Terraform.

Building reusable components in Terraform

In this chapter, we'll implement a standardized VPC module that will deploy a VPC with a public
and private subnet in three different availability zones. In Terraform, these components are called
modules and will be used by our Terraform code.

Additional information

We have discussed the technical details of VPCs in a previous chapter and won't be repeating
them here. Please see Chapter 3, Creating a Data Center in the Cloud Using a VPC, for a more
detailed explanation of the concepts of VPCs and how we can implement them in IaC.

Building reusable components in Terraform

The following diagram shows the high-level architecture that our component will build out.

Availability Zone B

m Public

Availability Zone C

m Public

Availability Zone A

m Public

subnet subnet subnet
Private Private Private
subnet subnet subnet

Figure 14.1 - The high-level architecture of the standard VPC that we will build in the Terraform module

To get started, we'll need to create a directory structure for our Terraform code that is going to use
the module and the module code itself. Create a new directory called vpc_example and create the
following directory structure:

L— vpc example/
L— modules/
L— standard vpc

The vpc_example folder will contain our high-level Terraform script, from which we'll call our module.
The standard_vpc folder in the modules subfolder will contain the code for our actual module.

305

306 Building Reusable Infrastructure-as-Code Components

While the naming convention for modules isn’t enforced, HashiCorp recommends a standardized
way of naming the files within a module. A module should contain the following files:

A main. tf file, which contains all the resource creation that the module has.

Avariables. tf file, which contains all the variables that our module offers. These are the
inputs that a user will be able to pass into your module so they should contain variables for all
the inputs required from the user.

An outputs. tf file, which contains the outputs of your module. Typically, you would expose
anything that the user of your module would need. In the case of a VPC, this could be the ARN
of the VPC or the ARNs of the public subnets since these will be needed by other parts of the
Terraform script to, for example, create an instance in them.

You can find more details on the recommended structure in this documentation: https://
developer.hashicorp.com/terraform/language/modules/develop/structure

For our VPC module, let’s get started with creating the variables.tf filein vpc_example/
modules/standard vpc/variables.tf:

1.

Open a code editor such as Visual Studio Code and create the variables. t £ file under vpc
example/modules/standard vpc/.

In it, we'll define four variables. The CIDR range of the VPC, the CIDR ranges of the public
and private subnets, and the region to which we want to deploy this module.

Let’s start with the variable for the VPC CIDR range. We define this variable with the name
vpc_cidr and give ita defaultof 10.0.0.0/16:

variable "vpc cidr" {

description = "VPC CIDR block"
type = string
default = "10.0.0.0/16"

}

Similarly, we define the three CIDR ranges for our public subnets. Since we need three CIDR
ranges (one for each Availability Zone), the type of our variable will be a list of strings instead
of just a simple string. We also provide defaults. Make sure to define your defaults such that
they map with the VPC CIDR range:

variable "public subnet cidrs" {
description = "public subnets CIDR"
type list (string)
default = ["10.0.1.0/24", "10.0.2.0/24", "10.0.3.0/24"]

https://developer.hashicorp.com/terraform/language/modules/develop/structure
https://developer.hashicorp.com/terraform/language/modules/develop/structure

Building reusable components in Terraform

We can then define the private CIDR ranges in the same way:

variable "private subnet cidrs" {
description = "private subnets CIDR"
type
default

}

We need a variable for the AWS region to which this VPC should be deployed:

list (string)
["10.0.11.0/24", "10.0.12.0/24", "10.0.13.0/24"]

variable "region"
description = "AWS region"
type = string

}

We also want to add a standardized naming convention to our VPCs. Each VPC should have
the name {project}-{region}-VPC for easier identification. To achieve this, we'll also
pass in a variable called "project" that will contain the project name:

variable "project" ({
description = "Name of the project"
type

string

}

With the inputs of our module defined in the variables. tf file, we can next define the
actual creation of our resources in main. t£f.

Open up a code editor of your choice (such as Visual Studio Code) and create a file called
main.tf inthe vpc example/modules/standard vpc folder.

The first resource we'll be creating is the VPC resource from AWS itself. We pass the CIDR block
from our variables into the VPC and then define the desired naming convention inside of the tags.
We also pass a tag that identifies that this resource has been created with our standard vpc
module. This isn’t a requirement but can help identify how resources were created.

resource "aws vpc" "main" {

cidr block = var.vpc_cidr
enable dns hostnames = true
enable dns support = true
tags = {
Name = "${var.project}-${var.region}-vpC"
TF Module = "standard vpc"
}

307

308 Building Reusable Infrastructure-as-Code Components

10. Since we have public subnets, we’ll next need to create an Internet Gateway (IGW) that is
associated with our previously created VPC (via the vpc_id property). We add the same
tagging structure with the name referencing our project as well as TF_Module here:

resource "aws internet gateway" "main" {

vpc_id = aws_vpc.main.id

tags = {
Name = "${var.project}-${var.region}-IGW"
TF Module = "standard vpc"

}

}

11. With our IGW created, we can now get started with creating our subnets. We'll start with the
public subnets. But before we can create subnets, we need to find the names of the availability
zones in this region. Since we want this module to be generally applicable, we can’t hardcode
the names. We'll instead use a data source in Terraform that gives us the available resources in
the region we are deploying resources into.

data "aws_availability zones" "available" ({
state = "available"

}

12. We can now create our three public subnets. By using the count argument, we can let Terraform
create three instances of this resource. We associate them with the previously created VPC and
use the CIDR blocks that were passed in as a variable. Since these CIDR blocks are a list of
strings, we can use count . index to access a different CIDR for each of the three iterations.
We do the same with the Availability Zone. Since we have a public subnet, we’ll map a public
IP address on launch and do a tagging following the naming convention of the other resources:

resource "aws_subnet" "public" {

count =3

vpc_id = aws_vpc.main.id

cidr block = var.public subnet cidrs[count.index]
availability zone = data.aws_availability zones.

available.names [count . index]
map public ip on launch = true

tags = {
Name = "${var.project}-${var.region}-public-subnet-
${count.index + 1}"
}

Building reusable components in Terraform

13. As we saw in Chapter 3, Creating a Data Center in the Cloud Using a VPC, what differentiates a
public from a private subnet is the fact that a public subnet has a route to the IGW. We'll now
create a route table that will be associated with the public subnet that contains a route to the
previously created IGW. In this example, we create a single route entry that sends all traffic for
"0.0.0.0/0" to the IGW that was created:

resource "aws route table" "public" {
vpc_id = aws_vpc.main.id

route {
cidr block = "0.0.0.0/0"
gateway id = aws_internet gateway.main.id
!
tags = {
Name = "${var.project}-${var.region}-public-route-
table "
1

}

14. We now need to associate the previously created public route table with our public subnet. This
is done via a route table association:

resource "aws route table association" "public" {

count =3
subnet id = aws_subnet.public [count.index] .id
route table id = aws_route table.public.id
}
s 3

Additional information

List resources in Terraform are zero-indexed. This means that the count variable we use in
the preceding goes from 0 to n - 1 (in our example, the indexes would be 0, 1, and 2). This is
why, in the name tag, we increment the count by 1 (count . index + 1) so that we have
-public-subnet-1, public-subnet-2,and -public-subnet-3 as the suffixes
instead of public-subnet-0.

G J

15. Similar to how we have created our public subnets, we can create our private subnets and
associate them with a private route table. Contrary to the public route table, this private route
table does not contain a route to the IGW.

Create Private Subnets
resource "aws subnet" "private" {

count =3
vpc_id = aws_vpc.main.id
cidr block = var.private subnet cidrs[count.index]

availability zone = data.aws_availability zones.available.

309

310

Building Reusable Infrastructure-as-Code Components

names [count . index]

tags = {
Name = "${var.project}-${var.region}-private-subnet-
${count.index + 1}"
}

}

Create Private Route Tables
resource "aws_ route table" "private" {

count = 3
vpc_id = aws vpc.main.id
tags = {
Name = "${var.project}-${var.region}-private-route-

table-${count.index + 1}"
}
}

Connect private route table to private subnets

resource "aws_route table association" "private" {
count =3
subnet id = aws_subnet.private [count.index] .id
route table id = aws_route table.private[count.index] .id

}

With our inputs and infrastructure defined, we only need to create the outputs that we want our
module to expose. We'll expose three outputs. The ARN of our VPC, the IDs of our public subnets,
and the IDs of our private subnets. These could then, for example, be used by Terraform code using
our module to schedule web server instances in.

1. Open up a code editor of your choice (such as Visual Studio Code) and create a file called
outputs.tfinvpc example/modules/standard vpc.

2. We first define an output for our VPC by linking the value back to our previously created
resource of type aws_ vpc:

output "vpc_id" {
description = "VPC ID"
value = aws_vpc.main.id

}

3. Similarly, we do the same for our public and private subnet IDs. We use the [*] syntax to
return all resources of type aws_subnet that were named private or public:

output "public subnet ids" {
description = "IDs of the public subnets"
value = aws_subnet.public[*].id

}

output "private subnet ids"

Building reusable components in Terraform

description = "IDs of the private subnets"
value

}

aws_subnet.private[*].id

With our module defined, it is time to write the Terraform code that will use the module. To do this,
we define another Terraform file called main. t £. This file will be in the vpc_example directory,
and in it, we'll consume the standard_vpc Terraform module we have just created.

1. Open up a code editor of your choice (such as Visual Studio Code) and create a file called main.
tf inthe vpc_example/ folder. After this, your directory structure should look like this:

L— vpc_example/
F— main.tf
L— modules/
L— standard vpc/
F— main.tf
— variables.tf
L— outputs.tf

2. Init, welll first have to create the Terraform and provider configuration. See Chapter 1, Setting
Up the AWS Environment, for a more detailed explanation of what is being done here:

terraform
required providers {

aws = {
source = "hashicorp/aws"
version = "~> 5.0"
required version = ">= 1.2.0"

}

provider "aws" {
region = "eu-central-1"

}

3. With the provider defined, it is time to use our module. To do this, we use the module block.
The first argument, the source, defines where to find the module we want to use. In this case,
we'll pass the directory path to our standard_vpc module folder:

module "vpc" {
source = "./modules/standard_vpc"

311

312 Building Reusable Infrastructure-as-Code Components

4. Next, we define all the variables of our module. We'll call our project test -project and we
pass the same region we used for creating our provider (eu-central-1 in this example).
This means that our VPC will have the name test-project-eu-central-1-VPC:

project = "test-project"

region = "eu-central-1"

5. We then define the 7 CIDR ranges. First, the overall CIDR range of the VPC and then the three
CIDR ranges for our public and private subnets respectively:

vpc_cidr = "10.10.0.0/16"

public subnet cidrs = [
"10.10.1.0/24",
"10.10.2.0/24",
"10.10.3.0/24"

]

private_subnet _cidrs = [
"10.20.11.0/24",
"10.20.12.0/24",
"10.20.13.0/24"

}

6. With this, we can run our Terraform script. Open a console. We'll first have to initialize our
Terraform directory. This will create the state file, download the provider, and load the module
from our subdirectory. To do this, run the following:

terraform init

7. Next, we can apply the changes with apply and run the following command:

terraform apply

Once Terraform has finished provisioning your infrastructure, you can open up the AWS console in the
region you have selected in the provider (and module) and see your newly created standardized VPC.

Don't forget to run terraform destroy to delete all the infrastructure we have just created.

Building reusable components in CDK

We have now seen how we can deploy a component using modules in Terraform. In this section, we’ll
explore how we can do the same with CDK.

Building reusable components in CDK

In Chapter 1, Setting Up the AWS Environment, we discussed how CDK can be used to generate
CloudFormation code from a programming language such as Python. Before starting, let’s quickly
revisit the level system when we talk about constructs in CDK.

In CDK, resources such as an S3 Bucket or an EC2 instance are defined by constructs. These constructs
are separated into three different levels:

o L1 constructs are low-level constructs that track the underlying CloudFormation resource.
They are usually prefixed with C£n and they map one-to-one to a resource in CloudFormation.
So, the CloudFormation resource of an S3 bucket, as defined at https://docs.aws.
amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-s3-
bucket . html, maps one-to-one to a resource in CDK called CfnBucket (which you can
find here: https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-1lib.
aws_s3.CfnBucket.html).

o L2 constructs are curated higher-level constructs that also model a single resource such as a
bucket. In contrast to the L1 constructs, which track a CloudFormation resource one-to-one,
the L2 constructs offer a higher level of abstraction and convenience functions for the developer
while still mapping to one resource (such as an S3 bucket). As an example of such convenience
functions, in our L2 construct of the S3 bucket, we have a function called grantRead (role),
which will generate the required IAM policies to grant the passed role object the rights to
read this bucket.

o L3 constructs represent entire components that are made up of multiple different resources.

We'll model our VPC as an L3 construct in which we'll use L2 constructs to create the required resources.

Before we can create our L3 construct, we'll first need to create a new CDK project. We have already
seen an explanation of this in Chapter 1, Setting Up the AWS Environment, so the following steps will
be only briefly explained. For a more detailed explanation, please have a look at Chapter 1 again.

1. Create a new directory in which our CDK project will be contained. In this example, we'll
use the name cdk_vpc_example. Open up a terminal and type the following command:

mkdir cdk vpc example

Additional information

Note that the name of the folder of a CDK project also defines the project name. So, if you
choose to change the name of your folder, you’ll have to adapt the name of the stack and the
paths as well.

2. Navigate into the directory by using the cd command:

cd cdk_vpc_example

313

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-s3-bucket.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-s3-bucket.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-s3-bucket.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_s3.CfnBucket.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_s3.CfnBucket.html

314

Building Reusable Infrastructure-as-Code Components

Inside the directory, create a new CDK project using the CDK CLI. We'll be using Python as
our language of choice for this example, but the concept is the same for all other languages,
such as Java, Typescript, and Go, that CDK supports:

cdk init app --language python

CDK has created a new virtual environment for us that we’ll need to activate:

On Unix operating systems (like Mac OS X or Linux)
source .venv/bin/activate

On Windows systems

.venv/bin/activate.bat

Next, install the dependencies for our CDK project:

python3 -m pip install -r requirements.txt

With the CDK project created, our virtual environment activated, and the required packages installed,
we can now get started with creating our VPC component. Throughout this example, you’ll see both
L1 and L2 constructs being used to create our resources. Besides showing you how to use them in

tandem, we resort back to the L1 constructs if properties aren’t available in the more abstract L2
construct for that resource.

To get started, we'll need to create a new file called standard vpc.py in the cdk_vpc
example folder. Open a code editor (such as Visual Studio Code) and create a new file called
standard_vpc.pyinthe cdk_vpc example/cdk vpc_ example/ folder. The
folder should already contain a file called cdk_vpc example stack.py, so the directory
structure looks like this:

L— cdk_vpc_example/
L— cdk vpc example/
— _ init .py
— cdk _vpc example stack.py
L— standard vpc.py

Inside the standard_ vpc .py file, we'll define our new construct. We'll first have to import
a few libraries. Our class will inherit from the parent Construct class of CDK, so we'll need
to import this as well as the ec2 package, Tags, and Stack. The ec2 package contains all
our L1 and L2 resources related to VPCs that we'll need.

We'll be using type hints when defining our construct, so we'll also import the type hint classes

for List and Optional (properties that can have a value or None) from the Python library’s
typing package:

from constructs import Construct
from aws cdk import (

Building reusable components in CDK

aws_ec2 as ec2,
Tags,
Stack

)
from typing import List, Optional

Next, we create our class. We'll call it Standardvpc and it'll inherit from Construct:

class StandardVpc (Construct) :

When writing CDK code, we can leverage standard concepts of our programming language
such as constructors. So, we'll use the constructor to define all the variables that need to be
passed into this construct.

The scope is of type Construct and will later be our stack. This tells CDK which CloudFormation
stack our resources will be associated to.

The construct_idis a string to identify our construct and auto-generate names.

We then pass the same variables we have already seen in Terraform, the project name,
vpc_cidr, as well as the public and private subnets. Notice that we don’t have to pass the
region since we can extract that from the stack:
def _ init__ (

self,

scope: Construct,

construct id: str,

project name: str,

vpc_cidr: str = "10.0.0.0/16",
public subnet cidrs: Optional [List[str]] = None,
private subnet cidrs: Optional [List[str]] = None,
**kwargs

) -> None:

We first need to call the construct’s super constructor:

super (). init (scope, construct id, **kwargs)

Next, we store the project name as a property of our Python class:

self .project name = project name
We'll also set some default for our public and private subnets (similar to the default value in
our Terraform variables) if none are passed into the constructor:

self .public subnet cidrs = public subnet cidrs
if not self.public subnet cidrs:
self .public subnet cidrs = [

315

316

Building Reusable Infrastructure-as-Code Components

10.

"10.0.1.0/24", "10.0.2.0/24", "10.0.3.0/24"
]
self.private subnet cidrs = private subnet cidrs
if not self.private subnet cidrs:
self .private subnet cidrs = [
"10.0.11.0/24", "10.0.12.0/24", "10.0.13.0/24"

Every CloudFormation stack, which is what the CDK code ultimately gets translated into,
contains information about the region in which it is deployed. So, we can access that region
information and store it as a property of our class:

self.region = Stack.of (self) .region

With this, we are ready to create the resources for our architecture. We start by creating the
VPC itself using the ec2 . Vpc L2 construct. We pass vpc_name as the naming convention,
{project name}-{region}-vpc,and define our IP range using the ip addresses
property. We can use the ec2. IpAddress . cidr helper class to turn our string into the
proper CIDR object. Since our VPC will be deployed into a maximum of three AZs, we define
this using the max_azs property.

Notably, we'll leave the subnet configuration as an empty list since we’ll create our subnets
ourselves and then associate them with the VPC:

Create the VPC

self.vpc = ec2.Vpc(
self,
"StandardvPC",
vpc_name=f"{self.project name}-{self.region}-vpc",
ip addresses=ec2.IpAddresses.cidr (vpc_ cidr),
max azs=3,
subnet configuration=[],
enable_dns_hostnames=True,
enable dns support=True,

)

With the VPC created, we can go ahead and create a new subnet resource for each of the public
CIDR ranges that were passed into our construct. We create a new list that will contain our
L2 ec2.Subnet constructs, called public_subnets, and then iterate over all provided
public CIDR ranges.

For each of the subnets, we'll set cidr block, a different Availability Zone from the VPC,
and set the public IP mapping to true since this is a public subnet.

Finally, we add our naming convention to the subnet using a tag and then add it to our list of
public subnets:

Building reusable components in CDK

Create public subnets
self .public subnets = []
for i, cidr in enumerate (self.public subnet cidrs) :
subnet = ec2.Subnet (
self,
f"PublicSubnet{i+1}",
vpc_id=self.vpc.vpc_id,
availability zone=self.vpc.availability
zones [1],

cidr block=cidr,

map public ip on launch=True,
)
self .public_ subnets.append (subnet)
Tags.of (subnet) .add (

"Name", f"{self.project name}-{self.region}-
public-subnet-{i+1}"

)

Additional information

The enumerate () function in Python takes an iterable, such as a list, as an argument and
returns a list of tuples where the first item in the returned tuple is the index and the second is
the element.

So, enumerate () calledonalistsuchasl = ["one", "two", "three"] returns
a list (technically an iterator) of [(0, "one"), (1, "two"), (2, "three")].

J

11. We'll next create our internet gateway and associate it with our VPC. Here, we are using the
L1 constructs of the internet gateway and the internet gateway association, as indicated by the
Cfn prefix.

We use the tags to set our standardized naming convention, and for VPCGatewayAttachment,
we pass the VPC ID from the previously defined L2 VPC construct:

self.igw = ec2.CfnInternetGateway (

self,
"InternetGateway",
tags=[{"key": "Name", "value": f"{self.project

name}-{self.region}-igw"}]
)
ec2.CfnVPCGatewayAttachment (
self,
"IGWAttachment",
vpc_id=self.vpc.vpc_id,
internet gateway id=self.igw.ref

317

318 Building Reusable Infrastructure-as-Code Components

12. With the IGW created (and attached to our VPC), we can create the public route table that
will route all its traffic to the IGW. We once again use the CfnRouteTable L1 construct to
create a route table that follows our naming convention using the Name tag:

Create public route table
self.public route table = ec2.CfnRouteTable (
self,
"PublicRouteTable",
vpc_id=self.vpc.vpc id,
tags=[{"key": "Name", "value": f"{self.project
name}-{self.region}-public-rt"}]

)

13. We then create a CEnRoute resource that has a destination of "0.0.0.0/0" and sends
that traffic to our previously created IGW (as indicated by the gateway id=self.igw.
ref argument). We associate this with our previously created route table via the route
table id property:

ec2.CfnRoute (
self,
"PublicRoute",
route table id=self.public route table.ref,
destination cidr block="0.0.0.0/0",
gateway id=self.igw.ref

14. Now we need to loop over each of our previously created subnets and create a route table
association. We'll use the enumerate function again to get the index that we can then use in
properly naming our associations:

Associate public subnets with public route table
for i, subnet in enumerate (self.public subnets) :
ec2.CfnSubnetRouteTableAssociation (
self,
f"PublicSubnetRouteTableAssociation{i+1}",
subnet id=subnet.subnet id,
route table id=self.public route table.ref

15. With the public subnets done and associated, we can follow the same pattern for our private
subnets. We first create a list that will contain all our private subnet constructs and then iterate
over all the private CIDR ranges that were provided:

Create private subnets
self .private subnets = []
for i, cidr in enumerate (self.private subnet cidrs):

Building reusable components in CDK

subnet = ec2.Subnet (
self,
f'PrivateSubnet{i+1}",
vpc_id=self.vpc.vpc id,
availability zone=self.vpc.availability
zones [1],
cidr block=cidr,
map public ip on launch=False,
)
self .private subnets.append (subnet)
Tags.of (subnet) .add (
"Name", f"{self.project name}-{self.region}-
private-subnet-{i+1}"

)

16. Next, create a private route table for our private subnets:

Create private route tables

self.private route tables = []

for i in range(3):

route table = ec2.CfnRouteTable (
self,
f"PrivateRouteTable{i+1}",
vpc_id=self.vpc.vpc id,
tags=[{
"key": "Name",

"value": f"{self.project name}-{self.
region}-private-rt-{i+1}"
11
)

self.private route tables.append(route table)

17. And finally, iterate over the list of private subnets and associate them with the private route tables:

Associate private subnets with private route tables
for i, subnet in enumerate (self.private subnets) :
ec2.CfnSubnetRouteTableAssociation (
self,
f"PrivateSubnetRouteTableAssociation{i+1}",
subnet id=subnet.subnet id,
route table id=self.private route tables[i].ref

319

320 Building Reusable Infrastructure-as-Code Components

With our construct done, we can now use it inside of our stack to create a new VPC.

1. Openthecdk vpc example stack.py fileinthe cdk vpc example/cdk vpc
example/ folder.

2. 'The CdkVpcExampleStack class, inheriting from St ack, defines the underlying
CloudFormation stack. In addition to the standard imports, we'll need to import our newly
created custom construct. Your imports should look like the following. Notice how we have
added the import for our Standardvpc class at the bottom:

from aws cdk import (
Duration,
Stack,
aws_sgs as sgs,
)
from constructs import Construct
from cdk vpc example.standard vpc import StandardVpc

3. Inside our stack, we can now create a new instance of StandardVpc by creating a new Python
object. Notice how we pass the values, such as the project name or the CIDR ranges of the VPC
and the public and private subnets, as arguments to the constructor of our custom construct:

class CdkVpcExampleStack (Stack) :

def init (self, scope: Construct, construct id: str,
**kwargs) -> None:
super (). init (scope, construct id, **kwargs)

The code that defines your stack goes here
vpc = StandardVpc (self, "standard vpc",
project name="test-cdk-project",
vpc_cidr="10.30.0.0/16",
public subnet cidrs=|[
"10.30.1.0/24",
"10.30.2.0/24",
"10.30.3.0/24"
i
private subnet cidrs=][
"10.50.1.0/24",
"10.50.2.0/24",
"10.50.3.0/24"
1)

4. With our stack done, we can run the deploy command. This will generate the required
CloudFormation code from our CDK code and then create a new CloudFormation stack for
us. To do this, open a terminal and run the following command:

cdk deploy

Building reusable components in CDK

Once the deployment is done, open up your AWS console in the region to which you deployed the new
stack and you should see a new VPC that follows the configuration we defined in our CDK application.

Don't forget to use cdk destroy to delete all the resources.

Summary

In this chapter, we saw how we can create reusable infrastructure components. We first introduced
some ideas on how to define the boundaries of your components and then saw practical examples
of how these infrastructure components can be implemented as modules in Terraform and as L3
constructs in CDK.

Infrastructure components are a great asset when we want our infrastructure to adhere to a defined
standard. However, nothing prevents a DevOps engineer from manually changing the configuration
of a resource deployed by one of our components in the AWS console. In the next chapter, we'll see
how we can use config rules and SCPs to monitor for or prevent unwanted configurations in our
AWS environment.

321

15

Ensuring Compliance Using
AWS Config and SCPs

So far, we have only dealt with a single AWS account and a single user to which we attached the rights
to carry out API operations via IAM policies. However, we quite often have the use case for more
than one AWS account. Think about a typical development project. Here, we'd usually want to have a
separate account for production and testing and maybe even a third for development.

As the number of accounts grows, it makes sense to ensure that even the admins of these accounts
can’t do everything in the account. We want to enforce certain guardrails and define upper limits for
what kind of API actions can be allowed by IAM policies. This is done by applying Service Control
Policies — or SCPs for short. SCPs are a powerful concept to prevent even admin users from carrying
out certain API actions.

But sometimes, we don't want to outright deny an action or configuration but just want to be informed
about it. This is where AWS Config - a service to continuously monitor the configuration of the
resources in your AWS account - comes into play.

In this chapter, we're going to cover the following main topics:
e An introduction to SCPs
o Writing an SCP
« An introduction to AWS Config
+ Writing your own AWS Config rule using Guard

Technical requirements

Before following this section, please create an AWS account for yourself. You can sign up at aws.
amazon.com. A basic understanding of AWS - for example, what a service is — will be beneficial.

324

Ensuring Compliance Using AWS Config and SCPs

All scripts from this section can be found at the following GitHub link:

https://github.com/PacktPublishing/AWS-for-System-Administrators-
Second-Edition

The CiA video for this chapter can be found at https://packt.link/DpFUI

An introduction to SCPs

SCPs are used to define an upper limit of rights that can be granted to a principal (such as an IAM
role or IAM user) via an IAM policy. It is important to understand that an SCP itself — even though
it looks like an IAM policy - does not grant any access. So, just because there is an SCP that defines
that an API action is allowed, the principal still needs an attached IAM policy.

In other words, an SCP defines the maximum rights that are allowed to be carried out. You can use
SCPs to restrict/block certain API actions. For example, you could have an SCP that blocks an entire
service from being used. If you wanted to block the usage of S3, you could do this in an SCP by
denying s3 : * API operations.

But just because no SCP denies the usage of a service/an API operation does not mean that every
principal (such as an IAM role or IAM user) is authorized to then do it. Youd still need an IAM policy
that allows your principal - for example, your IAM role - to execute said API call.

Consider the following examples — we'll assume you want to execute the s3 : PutObject API action
from an IAM role:

o If you have an IAM policy that allows s3 : PutObject to be executed and no SCP blocking
it, the request will be allowed

o If you have no IAM policy that allows s3 : PutObject and no SCP blocking it, the request
will not be allowed because no IAM policy allows you to execute it — despite it not being
blocked by an SCP

o If you have an IAM policy that allows s3 : PutObject to be executed and an SCP blocking
it, the request will be blocked. SCPs supersede IAM policies

You can find more information about the evaluation logic of the different kinds of policies in this
documentation: https://docs.aws.amazon.com/IAM/latest /UserGuide/reference
policies evaluation-logic policy-eval-basics.html

SCPs use the same JSON-based syntax to define them as IAM policies, covered in Chapter 2.

https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition
https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition
https://packt.link/DpFUI
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic_policy-eval-basics.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic_policy-eval-basics.html

Setting up an AWS organization

Setting up an AWS organization

Since SCPs act on an organization level, we'll need to create an organization to which we can then
attach SCPs. We'll go a lot deeper into organizations in the next chapter, but let’s start with a small
primer on what organizations are.

In AWS, organizations allow you to manage and create multiple accounts that should be handled
together. Organizations allow you to — through SCPs - enforce rules across all the accounts that are
part of the organization. Think about a large enterprise where hundreds of teams are using AWS to
deploy their solutions. If every team would just sign up with their own credit card and an arbitrary
e-mail address — as private people using AWS might do - it would be difficult to even keep track of all
the accounts that are in use. By using an organization, you have one central place where AWS accounts
are created and mechanisms to ensure that only certain features of AWS are used.

Before setting up our organization, let’s introduce a few key terms:

o Anaccount is an AWS account. Within organizations, there are two types of accounts. Member
accounts are part of your organization. The management account is the root account of your
organization. In it, the organization itself is set up. The management account retains control over
the organization itself. Protecting the root user of a management account is of vital importance
and we'll elaborate on best practices in the next chapter.

o Accounts in an organization can be associated with an Organizational Unit - commonly
abbreviated to OU. When we create SCPs, we then have to attach them to an OU where they
take effect on all accounts in that OU.

Let’s set up a simple AWS organization that we can use to demonstrate SCPs. We'll then add to this
organization in the next chapter.

Follow these steps to create the organization. Pay particular attention that you are logged into the
correct account:

1. Open the AWS Console and search for AWS Organizations. AWS Organizations is a global
service so there is no region selection.

325

326 Ensuring Compliance Using AWS Config and SCPs

2. On the service page — shown in the following screenshot, you’ll see a Create an organization
button. Click on it to create the organization.

B 4 @ @& oclouar

Marcel Neidinger

=]

AWS Organizations

Invitations

Management &

AWS Organizations
Central management for
multiple AWS accounts

About

AWS Organizations helps you centrally manage and govern your enviranment as
you grow and scale your AWS resources. Using AWS Organizations, you can create
accounts and allocate resources, group accounts to organize your workflows, apply
policies for governance, and simplify billing by using a single payment methad for
all of your accounts. AWS Organizations is integrated with other AWS services so
you can define central i ions, security i audit

and resource sharing across accounts in your ization. AWS Organi s

Create an organization to manage multiple AWS
accounts. Learn more [2

Create an organization

This creates an organization with all features enabled. You
€an also create an organization with consolidated billing
features only. Learn more [

Pricing

There is no cost to use AWS Organizations.

Getting started [3

Getting started with AWS Organizations

Decumentation

available to all AWS customers at no additional charge,

q your best practice AWS environment

Figure 15.1 - Creation of our first organization

3. You might have to click a verification link in an email sent to the email address that is connected
to this AWS account.

4. After the organization has been created, you'll see the overview page — shown in the following
screenshot, which shows you an overview of the OUs and accounts associated with this

organization. By default, there is a Root OU and the account from which we have created the

org is joined. Notice the management account flag that is next to its name. We'll want to create
a new OU underneath the root OU. To do so, select the checkmark on the root OU and - in
the Actions menu - select Create new as shown in the following screenshot:

Setting up an AWS organization

AWS accounts

The accounts listed below are members of your organization. The organization's management account is responsible for paying the bills for all
accounts in the organization. You can use the tools provided by AWS Organizations to centrally manage these accounts. Learn more [3

(@ Centralize root access for member accounts Enable in IAM X

You can delete root credentials for your member accounts and perform privileged actions from the
management or delegated account. Learn more about centralizing root access [3

Organization

Organizational units (OUs) enable you to group several accounts together and administer them as a sinc Organizational unit
[Q, Search by name, email, account ID or OU ID.
Create new
Organizational structure Accouni
¥ @ [Root
AWS account
r-pdyi
0 @ Marcel Neidinger |
oil
317322385701 | marcel.neidinger@nlogn.org Barma i arnks
Export account list

Figure 15.2 — Overview of our AWS organization and creation of a new OU

5. Each OU has a name, which we need to define in the dialog. In the Organizational unit name
field, type the desired name. For this example, we'll be creating an OU with the name Sandbox.
Click Create organizational unit after typing the name.

Create organizational unit in Root

An organizational unit (OU) can contain both accounts and other OUs, This enables you to create an inverted tree hierarchy. The structure has a
root at the top and branches of OUs that reach down. The branches end in accounts that act as the leaves of the tree. Learn more [%

Details

Organizational unit name

[Sandbox]

An OU name can be up to 128 characters.

Tags

Tags are key-value pairs that you can add to AWS resources to help identify, organize, and secure your AWS resources.

No tags are associated with the resource.

You can add 50 more tags.

Cancel

Figure 15.3 - Dialog to create a new OU in our organization

327

328

Ensuring Compliance Using AWS Config and SCPs

6. With our OU created, we can now create a new account. Back in the overview page, at the top
right, there is a button called Add an AWS account. On the dialog shown in the following
screenshot, you are given the choice of either creating a new AWS account or inviting an existing
account to your organization. For this example, we'll create a new testing account. Select Create
an AWS account and fill in the details.

For the AWS account name, we'll choose Test ing in this example. The account will also
need an associated email address. The IAM role name is the name of the role - by default, with
admin privileges — that will be created in the member account. We'll assume this role from
the management account to manage resources in our member account. It is the mechanism
for cross-account access.

After filling in the details, click Create AWS account to get a new account created.
Add an AWS account

You can add an AWS account to your organization either by creating an account or by inviting one or more existing AWS accounts to join your
organization.

© Create an AWS account () Invite an existing AWS account
Create an AWS account that is added to your organization Send an email request to the owner of the account. If they accept, the
account joins the organization.

Create an AWS account
AWS account name

L Testing }

Email address of the account's owner

[mn-aws-sandbox-testing@nlogn.org .!]

1AM role name
The management account can use this IAM role to access resources in the member account

[OrganizationAccountAccessRole]

Tags

Tags are key-value pairs that you can add to AWS resources to help identify, organize, and secure your AWS resources.

No tags are assaciated with the resource.

You can add 50 more tags

cancel i Create AWS account

Figure 15.4 - Adding a new AWS account to our org

Setting up an AWS organization

7. We now have a new AWS account - but this account is currently not associated with our
Sandbox OU. To associate the account, select it in the overview — as shown in the following
screenshot — and, under Actions, select Move.

AWS accounts | Ad ’
The accounts listed below are members of your organization. The organization's management account is responsible for paying the bills for all
accounts in the organization. You can use the tools provided by AWS Organizations to centrally manage these accounts. Learn more [2

(@ Centralize root access for member accounts X

You can delete root credentials for your member accounts and perform privileged actions from the
management or delegated account. Learn more about centralizing root access [

Organization

Organizational units (OUs) enable you to group several accounts together and administer them as a single unit instead of Organizational unit

Q Search by name, email, account ID or OU ID. = Hierarchy
Organizational structure Account created/joined
v Root
O AWS account
r-pdyi
[Move]
» (] [3 sandbox Close
ou-pdyi-ud6ggpzs Remove from organization
Marcel Neidinger Export account list
Ue B . Joined 2025/01/31 2

317322385701 | marcelneidinger@nlogn.org

Testin
@ g Created 2025/01/31
051826721067 | mn-aws-sandbox-testing@nlogn.org

Figure 15.5 — Action to move an account to a different OU

8. Copy the account number of the Testing account (the number ending in 1067 in this example)
as we'll need it in the next section.

329

330

Ensuring Compliance Using AWS Config and SCPs

9. Select the OU you want to move this account into - in this example, our previously created
Sandbox OU - and click Move AWS account.

Move AWS account 'Testing’

When you move an AWS account from one organization unit (OU) to another, it changes the policies that apply to the account. This can change
the permissions for the account and how supported AWS services can interact with the account. Learn more [2

AWS account to be moved

Account name s Account ID v Email v
Testing 051826721067 mn-aws-sandbox-testing@nlogn.org
Destination

Select root or organizational unit that account should be moved to.
Organizational structure
v O 1 Root

r=pdyi

» @ [sandbox

ou-pdyi-udéggpz5

Cancel Move AWS account

Figure 15.6 — Selection of the OU we want to move our account to

We now have created a new AWS account and associated it with a new OU. You might be wondering
how we can connect to the newly created account - since we never entered a password. Let’s explore
how this is done next.

Logging into the AWS console of our new account by assuming a role

Accessing the account is done by assuming an IAM role. We created that role when creating the
account. Before attaching an SCP to our OU, let’s log in to the AWS console of our newly created
member account. We'll see how to set up programmatic access in the next chapter.

(R
Note

As of January 2025, AWS has rolled out a new feature that allows signing into multiple AWS
console sessions at the same time. This chapter assumes that you have activated this feature.

Check this link in the documentation for more information on multi-session support: https://

docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/multisession.
html

https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/multisession.html
https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/multisession.html
https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/multisession.html

Setting up an AWS organization

To access the AWS account, follow these steps:

1.

Log in to your management account and click on the account ID at the top right. A dialog, as
shown in the following screenshot, will appear. Click on the little arrow next to Add session
to reveal the Switch role option. Note that you can’t use your root user to switch roles into a
different account.

You’'ll be taken to a dialog where you have to define the account ID and IAM role name you

want to assume. You can see the dialog in the following screenshot:

[Z' Q @ @ Europe (Stockholm) ¥ Account ID: 3173-2238-5701 a

marcel
1 other active session[2 Current session

Account ID

Account ID: 3173-2238-5701 l_l:l 3173-2238-5701

root

1AM user
IC] marcel

Account

Organization

Service Quotas

Billing and Cost Management

Security credentials

Turn off multi-session support

«C=1aD suntottssions | v 2

Switch role [2

Figure 15.7 — Dialog to switch the role to another account

331

332

Ensuring Compliance Using AWS Config and SCPs

The Account ID is the 12-digit account ID of our member account that you copied in step 8
of the previous set of instructions. IAM role name is the name of the role you want to assume.
Use the org’s default admin role here. The default name is OrganizationAccountAccessRole
and you defined it in step 8 when creating the new AWS account. You can define Display name,
which will be shown in the Switch Role dialog, but this is optional. Once you have put in the
role and account ID, click Switch Role.

Switch Role

Switching roles enables you to manage resources across Amazon Web Services accounts using a single user. When you switch roles, you
temporarily take on the permissions assigned to the new role. When you exit the role, you give up those permissions and get your original
permissions back. Learn more Z

Account ID
The 12-digit account number or the alias of the account in which the role exists.

L}
‘ ‘II

IAM role name

The name of the role that you want to assume which can be found at the end of the role's ARN. For example, provide the TestRole role
name from the following role ARN: arn:aws:iam::123456789012:role/TestRole.

L H

Display name - optional
This name will appear in the console navigation bar when active. Choose a name to help identify the permission set assigned to the role.

Display color - optional
The selected color displays in the console navigation when this role is active

‘ONone Vl

Cancel

Figure 15.8 - The dialog to set the role and account we want to switch into

Additional information

You can use the switch role dialog not only to switch to a role in a different account but also
in the same AWS account. This can be particularly useful to troubleshoot permission issues.

Setting up an AWS organization

3. After clicking the Switch Role button, you’ll be taken to the AWS console of your new account.
In the following screenshot, notice how - at the top right — you have a different AWS account
ID from the ID of your management account. You can see that we are logged into the account
ending in 1067 with the federated user OrganizationAccountAccessRole/marcel. The first
part is the role that we have just assumed and the second part is the name of the IAM user that
was used in this example to switch the role. You can also see that I have two other sessions
open, one for the root user and one for the IAM user marcel. These sessions are logged into
the management account. You should have at least one active session — with the IAM user you
logged in to your management account.

Q @ @3 Europe (Stackholm) ¥ Account |1D: 0518-2672-1067 A
OrganizationAccountAccessRole @ 051826721067

2 other active sessions[2 Current session

Account ID

Account ID: 3173-2238-5701 I5) 0518-2672-1067

oot
f Federated user
[C] OrganizationAccountAccessRole/

Account ID: 3173-2238-5701 marcel

marcel
Account

Organization
Service Quotas

Billing and Cost Management

Turn off multi-session support

Add session [2 D Sign out of all sessions

Figure 15.9 — Overview of the user sessions

We can now easily access our Testing account, which is part of our Sandbox OU. But so far, we haven’t
imposed any restrictions via SCPs on this account. That’s what we’ll do now.

Enabling SCPs and creating a new policy

In order to create SCPs, we need to log back in to our management account. Either log in to your
AWS console with the IAM user of your management account or use one of the “active sessions” in
the menu (shown in Figure 15.9) to go back to your management account.

333

334 Ensuring Compliance Using AWS Config and SCPs

By default, SCPs are not enabled when creating a new org.
Follow these steps to enable SCPs and create your first policy:

1. Open the AWS Organizations service by searching for it.

2. In the left navigation pane, click on Policies. You'll see a list of all the available policy types -
also shown in the following screenshot. We'll discuss each of them in detail in the next chapter.
For now, we are only interested in the SCPs.

Supported policy types
Policy type A Status

Al services opt-out policies
Al services opt-out policies allow you to control data collection for AWS Al services for all the accounts in an @ Disabled

arganization. Learn more [2

Backup policies
Backup policies allow you to centrally manage and apply backup plans to the AWS resources across an organization's O Disabled

accounts. Learn more [

Chatbot policies
Chatbot policies allow you to control access to an organization's accounts fram chat applications such as Slack and @ Disabled
Microsoft Teams. Learn more [2

Declarative policies for EC2
Declarative policies for EC2 allow you to centrally declare and enforce desired configurations for EC2 at scale across an

(® Disabled

organization, Once attached, the configuration is always maintained when EC2 adds new features or APls. Learn
mare [

Resource control policies
Resource control policies (RCPs) offer central control over the maximum available permissions for resources in an ©® Disabled
organization. Learn more [%

Service control policies
Service control policies (SCPs) offer central control over the maximum available permissions for IAM users and |AM @ Disabled
roles in an organization. Learn mare [4

Tag policies
Tag policies allow you to standardize the tags attached to the AWS resources in an organization's accounts. Learn ©® Disabled
more [

Figure 15.10 — Overview of all available policy types with the SCPs highlighted

Setting up an AWS organization

3. You'll be taken to a dialog that allows you to enable SCPs by clicking the Enable service control
policies button as shown in the following screenshot:

Service control policies

Service control policies (SCPs) offer central control over the maximum available permissions for |AM users and IAM roles in an
organization. Learn more [%

 Enable service control policies
Figure 15.11 - The button to enable SCPs for our org

4. With SCPs created, you’ll be taken to an overview page of all the SCPs that are currently
active for this org, as shown in the following screenshot. By default, there is only one SCP, the
Full AWSAccess AWS managed SCP that is attached to the root. This SCP simply allows access
to all available AWS services.

@ Service control policies have been enabled. X

Service COI'ItrDl policies (Disable service control policies)

Service control policies (SCPs) offer central control aver the maximum available permissions for 1AM users and IAM roles in an
organization. Learn mare [

Available policies Create policy

a Name A Kind Description

O FullAWSAccess AWS managed policy Allows access to every operation

Figure 15.12 — Overview of active SCPs

We are now ready to create our new SCP. For this walk-through, we'll create an SCP that allows the
creation of EC2 instances only in a few selected regions. This is a very common use case for SCPs since
many companies have restrictions on where their infrastructure can be deployed. These restrictions
can come from regulatory requirements or can be set by the enterprise architecture. By only allowing
a few select regions in which the ec2: Start Instance operation can be called, we can efficiently
enforce this rule and prevent our workload teams from accidentally running workloads in one of the
disallowed regions.

To create this new policy, follow these steps:

1. Click on the Create policy button at the top right.

335

336

Ensuring Compliance Using AWS Config and SCPs

You’ll be taken to the dialog to create a new SCP. At the top — as shown in the following
screenshot — you'll have to give your SCP a name. For this example, we'll use Sandbox-EU-
Only. The name of your policy should be descriptive. Here, we are including the name of the
OU that this will be applied to (Sandbox) and a description that EU only is allowed. In the
policy description, we then expand that this policy will allow the starting of EC2 instances only
in eu-west-1 and eu-central-1.

Create new service control policy

A service control policy (SCP) specifies the maximum permissions that can be used by users and roles in your organization's accounts. An SCP
doesn't grant permissions. You must still use |AM permission policies or resource policies to grant permissions. Learn mure_ﬂ

Details

Policy name

[sandbox-Eu-only

A policy name can be up to 128 characters and can include the following characters: a-z, A-Z, 0-9, and =@ _-

Policy description - optional

Only allow starting of instances in eu-west-1 and eu-central-1

4

& description can have up to 512 characters and can Include the following characters: a-z, A-Z, 0-5, and . *=@_-

Figure 15.13 - Dialog to create the new policy

Below the naming details of your policy is the editor to create your new policy. SCPs use the
same JSON syntax as IAM policies. We'll go through the parts of the policy step by step.

We first define the version of our policy language. This is the same as with our IAM policies,
so "2012-10-17":

{

"Version": "2012-10-17",

Next, we define the list of statements that we want to use. Similar to IAM policies, statements
define the API actions (such as ec2 : Start Instance) and the effect (allow or deny). We start
by giving a descriptive Sid (or statement ID) for our first statement - NoEC20utsideEurope
for this example:

"Statement": [

{

"Sid": "NoEC20utsideEurope",

Next, the effect. By default, we want to deny any IAM policy from granting these permissions.
So, we use "Deny" as the effect:

"Effect": "Deny",

Setting up an AWS organization

10.

11.

Next, our list of actions that we want to deny. We use the two explicit ec2 :RunInstance
and ec2:StartInstances EC2 API actions as well as the ec2: StartInstance*
wildcard to capture all API actions as well as future ones that might be added:

"Action": [
"ec2:RunInstances",
"ec2:StartInstances",
"ec2:StartInstance*"

1

We need to now scope the resources to which we want to apply this SCP. For this example,
we want this SCP to apply to all instances in all accounts in this OU. This is why we use the
wildcard for the instance ID and the region and account number in the ARN:

"Resource": [
"arn:aws:ec2:*:*:instance/*"

] I

So far, we have written an SCP that would deny any IAM user/role, regardless of their attached
IAM policies, from using the ec2 : RunInstances APl action. This is a great way to block
certain undesired API actions or (by using a wildcard such as ec2 : *) to block entire services.

In our example, however, we want to allow these API actions in a defined set of regions (namely
eu-west-1 and eu-central-1). To implement this, we use a condition:

"Condition": {

The operator of our condition will be "StringNotLike" and the "aws : RequestedRegion"
property. This means that any request that isn’t in the defined list will get the preceding deny
applied. Only if the request is for eu-west -1 or eu-central-1 (and the user/role has an
IAM policy with the correct access rights attached) will the deny not apply.

"StringNotLike": {
"aws :RequestedRegion": [
"eu-west-1",
"eu-central-1"

337

338 Ensuring Compliance Using AWS Config and SCPs

It is important to remember that SCPs do not grant any permissions. They define an upper bound of
what permissions can be granted to a principal (such as an IAM role or IAM user) via an IAM policy.

We now have our SCP created - however, it does not currently apply to any of our OUs. To change
this, we need to attach it to an OU. Follow these steps to do this:

1. On the overview page of your SCPs, select the newly created Sandbox-EU-Only policy and - as
shown in the following screenshot - select Attach policy.

SerViCE COI‘ItI’Ol pOliCiES (Disable service control policies)

Service control policies (SCPs) offer central control over the maximum available permissions for IAM users and IAM roles in an
organization. Learn more =

Available policies -:_ Create policy
Attach policy
a8

Name A Kind Description
Delete policy

0 FullAWSAccess AWS managed policy Allows access to every operation

[Sandbox-EU-Only Customer managed policy Only allow starting of instances in eu-west-1 and eu-central-1]

Figure 15.14 — Action to attach an SCP to an OU
2. In the dialog (shown in the following screenshot), select the OU you want to attach the SCP
to. In this example, select Sandbox and click Attach policy.

Attach Sandbox-EU-Only to one or more targets

AWS Organization

Organizational units (OUs) enable you to group several accounts together and administer them as a single unit instead of one at a time.

[Q, Search by name, email, account 1D or OU ID.] "= Hierarchy

Organizational structure Account created/joined date

¥ @ [y Root
r-pdyi
> D Sandbox

ou-pdyi-udbggpzs

Marcel Neidinger
Ue o LErE Joined 2025/01/31

317322385701 | marcel.neidinger@nlogn.org

[J & Testing

051826721067 | mn-aws-sandbox-testing@nlogn.org

Created 2025/01/31

Cancel Attach policy

Figure 15.15 - Attaching the policy to our OU

Setting up an AWS organization

We can now verify that the SCP is really in effect. Use the switch session feature to log back into the
Testing account that is under the Sandbox OU.

Then follow these steps to verify that your SCP is in effect:

1.
2.

Open up a new session on the Testing account.

Navigate to the IAM service to confirm the access rights of the IAM role. Within IAM, under
Roles in the left-hand navigation, select Roles and find OrganizationAccountAccessRole.
As shown in the following screenshot, that role has the AWS-managed AdministratorAccess
policy attached to it. So, just from the IAM permissions, this role is allowed to do everything.

OrganizationAccountAccessRole i
Summary

Creation date ARN Link to switch roles in console
January 31, 2025, 20:07 (UTC+01:00) I0) arn:aws:iam:051826721067:role/ Im} https://signin.aws.amazon.com/switchrole?
OrganizationAccountAccessRole roleName=0rganizationAccountAccessRole&accou
nt=051826721067
Last activity Maximum session duration
- 1 hour
Permissions Trust relationships Tags Last Accessed Revoke sessions

Permissions policies (1) o @ Simulate [2 Remove

You can attach up to 10 managed policies.

Filter by Type

~

[Q, Search) [All types v J 1 @
(] Policy name [2 A] Type v ‘ Attached entities v
O 0] AdministratorAccess AWS managed - job function 1

Figure 15.16 — Overview of our IAM role showing the attached IAM
policies that grant administrative access to the AWS account

To see our SCP in action, navigate to the EC2 service and then switch your region to any
region that wasn’t part of the list of allowed regions in the SCP. In this example, I am trying
to create an EC2 instance in the eu-north-1 (Stockholm) region. Consult the Setting up
EC2 instances section in Chapter 4, on scalable compute with EC2 for a more detailed guide
on how to launch an instance.

339

340

Ensuring Compliance Using AWS Config and SCPs

3. Trying to create an instance in the Stockholm region will result in the error that can be seen
in the following screenshot. As you can see, the error indicates that it can’t complete the
ec2:RunInstances API operation due to an explicit deny in an SCP.

@ Q @ @ Europe (Stockholm) v

= ECZ > Instances > Launch an instance ® B ’:‘.

@® Instance launch failed
You are not authorized to perform this operation. User: arn:aws:sts::051826721067:assumed-role/OrganizationAccountAccessRole/marcel is not authorized to
perform: ec2:Runinstances on resource: arn:aws:ec2:eu-north-1:051826721067:instance/* with an explicit deny in a service control policy. Encoded
authorization failure message: Ql6U-W3ai-jKvWCnbOviReksJ-
YgmlyzlkwDJ5JsIPi94TFentC73DAp77ZWGhay6YDKGtQvmxhDAOs7xqblZzuUCID4_FeQ74U0tshlitzVeimW-ZenCbAd-nOCWv5JwSjkoUsdnke-bT-
yhitEAvYDdeSigdvYvSC3fT4cgApUoopF8tR9jp90s2zBx2NnflchFVPsVIGn1XHc-bI5SXtG3NxzNV26djn_8NiMY2heZUOBs1pC44HgA-jiZN3tXO-
iBrPIF1SQEAksn7HNvo50tUwFkqs_BJFXTNyGpM_qGR__BnBliFwILJWzblztA6sWeGWqgAanqvOicJw0_65KOvWt9DL3fUjRtQbWF63DLLkoaxgAY2KEZQBUUrfOOF

MDJAbQg-GLddUK5Cv1CFuH4NIdOP8277P62CKNP7s4lwjxD1JULb-HFSWND-
ztV5q)_bgN973U2irY098cFKuiL6AKyN73Zqx7Db131tGFKsSQNIOmKqTmk2DxWZfI3UQtCx2sRZHDNn4yUCADSg6kd5ZNx_0ljQSeRQPzCTZ0pjWnWKgJbHUsSXCG
2n62uycUBHIrSB2yTXmUHKIL2u-3wMeMNs-

SWdPeaEcUoVan4ogBX5DuT TbmxR7fQJNPC2EzRP2RiIQRtdRfY50iauB4FJmoWz-55XveVacC5_8oDGhgbNCI_QASF-

fA41Kci404NsMYBhweGE 1B4j4mkHo2qBbjFO-gaHK3hsltZHwghZyWZ51IkACqtdopmey2RMxH 1U-c8F8yaXDfNhwfr-y T-tvwuO6pB5QSox044Lb85RdmmK279-
h3DuLN2uP50x9PGI02YhhU-94EH5hAVVGMKIQKEONS5s6pFYgyAVdjXkMWhAm-

DAVqQndVFWzgL MRWBSNn55PNKEH3VUVZE_4k_e6vdCwbMPzvNPALSIQPXW3ZxLWYAuc-gAXeASEDMevDQ

Figure 15.17 — Launch error due to the SCP blocking the API operation in the Stockholm region

You can verify that the SCP only denies the API actions in the regions by repeating the same process
in the eu-central -1 (Frankfurt) or eu-west -1 (Ireland) regions.

We have now seen how we can use SCPs to explicitly deny API actions. But what if we just want to be
able to detect any non-compliant resources? This is what AWS Config and its config rules can be used for.

Using AWS Config to detect non-compliant resources

In the previous section, we saw how we can explicitly deny API actions on an org level using SCPs.
However, there might be cases where we do not want to deny API actions. Instead, we want to be
alert when a resource has a certain configuration value, such as an instance that is being launched in a
non-standard region. After all, there could be good reasons for that instance to be launched in a region.

This detection of non-compliant configuration of resources is what AWS Config can be used for.
Config is a service that allows you to scan existing and newly created resources for configuration
changes. It then applies a set of rules to it and marks any resource that doesn’t comply with our rules
as non-compliant. This is a very powerful mechanism to soft-enforce compliance by alerting but not
losing the agility that the cloud offers.

Config does this by using the concept of a recorder that listens for configuration changes within your
account (or accounts in your organization). It then writes these changes to a central location, usually
an S3 bucket, and runs the rule checks against them.

Using AWS Config to detect non-compliant resources 341

Note

Follow these steps in the management account or detach the SCP from the Sandbox OU.
Otherwise, the SCP will block you from seeing the Config rule in action since no non-compliant

instance can be launched due to the SCP blocking it.

Before we can get started, we need to enable AWS Config. Follow these steps to do this:

1. Login to your management account with a user that has admin permissions.

2. Search for the Config service.

3. When first opening the service page, you'll be greeted with a 1-click setup button for AWS
Config, as shown in the following screenshot:

aws

AWS Config

Record and evaluate
configurations of your AWS
resources

B £ ? © Europe (Stockholm) » Account 1D: 3173-2238.5701 ¥
marcel

Set up AWS Config

A summarized view of AWS and non-AWS
resources and the compliance status of the
rules and the resources in each AWS Region.

Get started

-click setup

Figure 15.18 — 1-click setup for Config

4. During the one-click setup, the configuration dialog will be preset with the AWS-provided
sensible defaults. As you can see in the following screenshot, you’ll be taken directly to the

Review part of the configuration dialog.
AWS Config > Set up AWS Config

ek Review

Settings

Revlew your AWS Config setup detalls. You can go back to edit changes for each section. Choose Confirm to finish setting up AWS Config.

Step 2
Rules Recording method
Step 3

Review Recording strategy

Record all resource types with customizable overrides

[b Resource types with override settin s](tﬂ

» Resource types with default settings (314)

Delivery method

53 bucket name
canfig-bucket-317322385701

» AWS Config rules (0)

Default recording frequency
Continuous

Cancel Previous Confirm

Figure 15.19 - One-click configuration review

342

Ensuring Compliance Using AWS Config and SCPs

The default settings exclude four resource types, the IAM role, IAM user, IAM Group, and IAM
Policy from being recorded. The data is written to an S3 bucket and configuration changes are
captured continuously.

By clicking the Confirm button, Config will create an IAM role with the required privileges,
as well as a new S3 bucket (in your account), to which the data is saved. By default, config will
keep the records for 7 years.

With config configured, we are taken to the dashboard. Here, we find an overview of the compliance
status of the resources in our account. The following screenshot shows this overview.

Compliance status

Rules Resources
£\ 0 Noncompliant rule(s) £\ 0 Noncompliant resource(s)
® 0 compliant rule(s) () 0 Compliant resource(s)

Figure 15.20 - Compliance status of our rules and resources

Compliance is shown both in terms of rules and resources. The number of non-compliant rules indicates
how many rules have at least one resource that isn’t compliant, while the number of non-compliant
resources indicates how many resources are violating at least one compliance rule.

Creating our own Config rule to detect instances in other regions

We now want to create a config rule that allows us to detect if a resource isn’t deployed in our two
allowed regions, eu-central-1 and eu-west-1.

Config supports three types of rules:

AWS managed rules are pre-configured rules provided by AWS. At the time of writing, there
are 498 AWS managed rules with use cases spanning from ensuring that the AWS access key
was rotated within a maximum number of days to checking that all ALBs redirect their HTTP
traffic to HTTPS.

Custom Lambda rules use a Lambda function to run the checks. With a Lambda rule, you
can run any kind of API calls (including calls to third-party systems such as an external IT
inventory management tool) to validate the compliance of your resource.

Guard rules use the Guard language to specify rule criteria. The example in this chapter will
use a Guard rule.

Using AWS Config to detect non-compliant resources

To create the new rule, follow these steps:

1. In the left-hand navigation of Config, select Rules.
2. On the Rules overview page - as shown in the following screenshot — select Add rule at the
top right.

AWS Config > Rules

Rules

A rule is a compliance check that helps you manage your ideal configuration settings. AWS Config evaluates whether your resource configurations comply with relevant
rules and displays the compliance results.

View details Edit rule Actions ¥
Rules c

Filter by compliance status

| au v

Name Remediation action | Type Enabled evaluation mode 1

No rules found.

Figure 15.21 - Empty set of rules in Config

3. We first need to specify the rule type. Select Create custom rule using Guard and click Next.

Specify rule type

Add rules to help you manage the ideal configuration settings of your AWS resources. You can add any of the following predefined, customizable AWS Config
Managed rules, or you can create your own AWS Config Custom rule using AWS Lambda functions or Guard Custom policy.

Select rule type

(O Add AWS managed rule

Deploy the following managed rules in their
default state or customize to suit your needs.

O Create custom Lambda rule @ Create custom rule using Guard
Use a Lambda function with your custom code Use Guard Custom policy that you write to

to evaluate whether your AWS resources evaluate whether your AWS resources comply
comply with the rule with the rule.

Cancel IL ‘ﬁ@iﬂ i

Figure 15.22 - Selection of the type of rule we want to create

343

344

Ensuring Compliance Using AWS Config and SCPs

We first need to define a name for our rule. In the Details section shown in the following
screenshot, type the name of your rule. In this example, we'll use no-ec2-outside-europe
and the Guard runtime version guard-2 . x . x, which is the latest guard runtime. We'll also
enable debug logs. This is especially helpful when developing config rules.

Configure rule

Customize any of the following fields

Details

Name
A unique name for the rule. 128 characters max. No special characters or spaces.

no-ec2-outside-europe H]

Description - optional
Describe what the rule evaluates and how to fix resources that don't comply.

Your description can be anything you like.

. y

Guard runtime version
The Guard runtime utilized to execute the Custom Policy below.

Enable debug logs

Figure 15.23 - Details of our new Guard rule

The editor in the Rule content section allows us to specify our guard rule content. We'll go
over each line of the guard rule in the following step.

Rule content

Rule content must follow the Guard custom policy syntax for the Guard runtime specified above. Learn more [2

1 |let allowed_regions = ["eu-central-1", "eu-west-1"]
'

3 |rule ec2_in_other_region when

4~ resourceType == "AWS::EC2::Instance"{

5 configuration.Region not in %allowed_regions

6

}

Figure 15.24 - Content of our rule

Using AWS Config to detect non-compliant resources 345

6. Inthe rule, we first define a list variable that will contain the regions we want to allow an instance
to be in. Variables have a name and are defined using the 1et keyword:

let allowed regions = ["eu-central-1", "eu-west-1"]

7. We then define the name of our rule:
rule ec2 in other region when

Next comes the rule body. We first need to define to which type of resources we want this rule
to apply. The name of the resource is the same as the name of that resource in CloudFormation.
For EC2 instances, this is the "AWS : : EC2: : Instance" resource type. By using the curly
brackets to scope the block, we can define that the following checks should only apply to
resources of the selected type. This check is also called a clause. Clauses are either true or false
and the following block is only run if the clause evaluates to true:

resourceType == "AWS::EC2::Instance"{

8. We can access the configuration of the instance - all variables that would also be available in
CloudFormation — using the conf iguration variable. We can use the dot operator to access
the properties, such as the Region property in this example, and then use it in a clause. This
clause checks that the region is not in the allowed regions. We can reference previously defined
variables using the variable name with the percentage sign before it.

The following clause is true if the region is not in the allowed regions list:

configuration.Region not in %allowed regions

}

9. A resource is in violation of the rule if the clause evaluates to true.

Additional notes

You can find the list of available operators in Guard at this link: https://docs.aws.
amazon.com/cfn-guard/latest/ug/writing-rules.html

10. With the rule defined, we can next decide on the evaluation mode. Our new rule can either
be evaluated pro-actively (before a resource is provisioned) or in a detective mode. Here, all
previously provisioned resources will also be evaluated. This is a great way to programmatically
check for violations of a policy.

We can also define where we want to apply this rule. In the rule, we are already scoping to
EC2 instances. Since our rule only applies to resources of the EC2 instance type, we can use
Resources scoping. Select AWS resources as the resource category and, under Resource type,
search for AWS EC2 Instance and select it.

https://docs.aws.amazon.com/cfn-guard/latest/ug/writing-rules.html
https://docs.aws.amazon.com/cfn-guard/latest/ug/writing-rules.html

346

Ensuring Compliance Using AWS Config and SCPs

In addition to applying the rule to all changes or only for a certain subset of resource types, we
can also apply the rule based on tags using the Tags scope of change.

Evaluation mode

o Turn on proactive evaluation
Enable evaluation of resources prior to provisioning
@ Turn on detective evaluation
Enable evaluation of resources which have been provisioned
Trigger type
AWS Config evaluates resources when the trigger occurs.

Scope of changes
Choose when evaluations will occur.

() All changes © Resources O Tags

When any resource recorded by AWS Config is When any resource that matches the specified When any resource with the specified tag is
created, changed, or deleted type, or the type plus identifier, is created, created, changed, or deleted

changed, or deleted

Resources
This rule can be triggered anly when the recorded resources are created, edited, or deleted. Specify the resources to record by editing the Settings page.
Resource category Resource type
AWS resources v Multiple selected v

AWS EC2 Instance X

Resource identifier - optional

Q. Enter resource identifier

Figure 15.25 - Configuration of the evaluation mode

11. Below the evaluation mode definitions, we can define parameters and rule tags. Parameters allow
us to define attributes that we can then use inside of our rule content. We'll leave them empty.

Parameters

Rule parameters define attributes that your resources must adhere to for compliance with the rule. Example attributes include a required tag or a specified 53 bucket. Optional
parameters that are not valid, such as missing a key or a value, will not be saved.

Key Value

IKey ‘ ‘(Dptiona!} I | Remove

Add another row

Rule tags - optional
Rule tags are labels that you assign to a rule. Each tag consists of a key and an optional value, both of which you define. Tags help you manage your rules.

Key Value

|Key ‘ ‘(optlonal) I | Remove

Add another row

Figure 15.26 — Parameters for our config rule

Using AWS Config to detect non-compliant resources

12. Click Next and review the content of the new config rule. Then click Save to create it. You'll be
taken back to the overview of rules where there is now one entry - a custom rule called no-ec2-

outside-europe.

With the rule defined, we now need to trigger non-compliance to validate that it works. To do this,

follow these steps:

1. Open the EC2 service, navigate to a region that isn’t part of the allowed list of resources, and
create a new EC2 instance. Refer to the Setting up EC2 instances section in Chapter 4, on scalable

compute with EC2, for a more detailed guide on how to launch an instance.

2. In comparison to the SCP, Config won't prevent you from creating the instance so it should

start successfully.

3. Navigate back to the rules in Config. It can take a few minutes for the new resource to be

picked up by Config.

4. Once the resource has been picked up, it will show up in the list of non-compliant resources

- as shown in the following screenshot:

no-ec2-outside-europe

Rule details

Description

Config rule ARN

arn:aws:config:eu-north-1:317322385701:config-
rulefconfig-rule-lquSqg

Enabled evaluation mode
+ DETECTIVE

Last successful detective evaluation
(@ January 31, 2025 11:30 PM

| Actions ¥

‘ Edit |

Detective evaluation trigger type
« Oversized configuration changes

« Configuration changes

Scope of changes

All changes

Resources in scope

MNoncompliant v
1D Type
i-06ae6bd1ef0d14ble EC2 Instance

Status

View details Remediate ‘ &

1 @

Annotation

Attempting to retrieve array index or key from map at path =/

Figure 15.27 - Rule details and the list of non-compliant resources

We have successfully created a config rule to monitor for EC2 instances that are created outside of

the list of allowed regions.

Config rules and SCPs can also be used in tandem. Especially if you are thinking about establishing a
new SCP, you could write a config rule to flag all resources that would be blocked by the new SCP. You
can then inform the resource owners to warn them that they need to change their resources before

enforcing compliance using an SCP.

347

348

Ensuring Compliance Using AWS Config and SCPs

Summary

In this chapter, we saw two different approaches to ensuring compliance in our AWS account. We saw
how we can use SCPs to enforce that certain API operations — such as the creation of EC2 instances
outside of a set of allowed regions — can’t be carried out. We then saw how we can use AWS Config
to create custom rules that monitor resources in our AWS account and flag them when they violate
our specified rules.

In the next chapter, we'll expand on our organization setup and will see how we can apply Config
rules across our organization.

Join the CloudPro Newsletter with 44000+ Subscribers

Want to know what’s happening in cloud computing, DevOps, IT administration, networking, and
more? Scan the QR code to subscribe to CloudPro, our weekly newsletter for 44,000+ tech professionals

who want to stay informed and ahead of the curve.

E T E
]
]

https://packt.link/cloudpro

https://packt.link/cloudpro

16

Operating in a Multi-Account
Environment

When dealing with an AWS environment, it is often useful to think of an account as a container
into which workloads and infrastructure are deployed. In theory, we can put all our resources into
one account. However, this will quickly lead to problems with separation. Imagine you have your
development and production all in one account. Which of the databases was the production one
again? And which resource can be deleted without any side effects for our production workload?

It thus makes sense to operate multiple AWS accounts that are dedicated to aspects of your cloud
infrastructure. Depending on the size of your organization, you might want to have a dedicated
account just for backups, one where you store audit logs and multiple accounts for a workload - one
for each stage.

To make these kinds of setups easier to build, AWS provides us with a few tools. To manage our
accounts, we have the previously introduced AWS Organizations, and to share resources between the
accounts, we can use AWS Resource Access Manager (or RAM for short).

In this chapter, we'll explore how these two services can be used together to lay the foundations of a
multi-account setup.

In this chapter, were going to cover the following main topics:

o Anintroduction to designing AWS organization structures
« Sharing resources within an organization using RAM

o Setting up cross-account access via IJAM

Throughout this chapter, we’ll consider best practices to follow when operating in a multi-account setup.

350

Operating in a Multi-Account Environment

Technical requirements

Before following along with the examples in this chapter, please create an AWS account for yourself.
You can sign up at aws . amazon . com. A basic understanding of AWS - for example, what a service
is — will be beneficial.

A basic understanding of IaC tools such as Terraform will be beneficial. Follow the instructions in
Chapter 1 to set up Terraform on your local machine.

All scripts from this section can be found on the following GitHub page:

https://github.com/PacktPublishing/AWS-for-System-Administrators-
Second-Edition

The CiA video for this chapter can be found at https: //packt.link/Php5g

If you haven’t completed the previous chapter, please set up the AWS organization as described there.

Designing AWS organizations

In the previous chapter, we saw how to create a basic AWS organization to which we could add a new
AWS account. We then used Organizational Units (OUs) to apply Service Control Policies (SCPs)
to restrict what the newly created accounts could do within AWS.

In this chapter, we will revisit the previously seen organization and expand it.

Additional information

This chapter follows the best practices recommended by AWS in their documentation. You
can find a full list of best practices under this link: https://docs.aws.amazon.com/
organizations/latest/userguide/orgs best-practices.html.

The first decision we have to take when designing our organization is how we want to group our
accounts. This is done via OUs. Purely based on the name, you might be tempted to simply reproduce
the corporate structure into the cloud environment.

The following diagram shows the corporate structure of a made-up company:

http://aws.amazon.com
https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition
https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition
https://packt.link/Php5g
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_best-practices.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_best-practices.html

Designing AWS organizations 351

Development

HR IT Marketing

Payroll Workstations Social Media
Infrastructure

Figure 16.1 — Corporate structure of our made-up company

We might be tempted to now reproduce this exactly into our OU structure. This means we'd have an
OU for workloads from HR, one for workloads from IT, and so on.

However, this is not recommended. As we saw in the previous chapter, SCPs are applied to OUs and
thus define the boundaries of what an account within an OU can do. Let’s take two workloads as
an example: a payroll application that is needed by HR to handle employee payslips and a ticketing
solution that is used by the workstations group within IT to handle support requests. Both of them
use EC2 instances for compute and RDS for their databases.

When being run in AWS, do these two workloads require different boundaries when it comes to AWS
API actions? Or would we end up reproducing the same SCPs across the HR and IT OUs?

Best practice

This is why AWS advises us as a best practice to “Group workloads based on business purpose
and not reporting structure” (see https: //docs.aws.amazon.com/organizations/
latest/userguide/orgs best-practices.html).

So, instead of grouping our OUs by our company structure, we introduce a workload OU, which will
house all of our workloads. When building a workload, we typically have at least two environments:
a production environment, which handles all our production traffic, and a development or testing
environment, which is used for the next iteration of the product. Based on your software development
processes, you might also have more environments, such as integration or testing.

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_best-practices.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_best-practices.html

352 Operating in a Multi-Account Environment

We can separate these out into different sub-OUs. Our OU structure now looks like the following diagram.

Workloads

Prod

Test

Figure 16.2 — Child OUs, prod and test, for our workloads parent OU

Before continuing, let’s implement this structure in Terraform.

(1
Important
Remember that you need to run this Terraform script in the account that owns the
AWS organization.

This walk-through assumes that you have set up your organization in the previous chapter. If
not, follow the instructions there first.

Creating an OU in Terraform
To create a new OU in Terraform, follow these steps:

1. Create a new folder called org setup using the mkdir command and navigate into it using
the cd command:

mkdir org setup
cd org setup

2. Inside, create a new file called org_setup. tf and open it in a text editor such as Notepad++
or Visual Studio Code:

touch org setup.tf

Designing AWS organizations 353

3. We start by defining the Terraform configuration, such as the AWS provider needed as well
as the AWS Region we want to use. Since organizations are a global feature, you can use any
Region you want here:

terraform {
required providers {

aws = {
source = "hashicorp/aws"
version = "~> 5.8"
provider "aws" {
region = "eu-central-1"

}

4. Any organization starts with a root OU, and all of our OUs will need to reside under this
root OU. Since we haven't created the organization itself using Terraform, we can use the
aws_organizations organization data source to retrieve the organization of this
account. Remember that an account can only be a member of one organization, so we have a
one-to-one mapping here:

data "aws_organizations organization" "org" {}

5. With this, we are ready to create the workloads OU. For this, we use the aws_organizations
organizational unit Terraform resource. We only need to provide a name and the
parent OU. In this case, the parent of our newly created workloads OU will be the root OU:

resource "aws organizations organizational unit" "workloads" {

name "workloads"

parent id = data.aws_organizations organization.org.roots[0] .
id

6. Using the same pattern, we now create a prod and test OU underneath the workloads OU:

resource "aws organizations organizational unit" "prod" {

name = Tprecl”

parent_id = aws_organizations_organizational unit.workloads.id
resource "aws organizations organizational unit" "test" {

name = "test"

parent_id = aws_organizations_organizational unit.workloads.id

}

354 Operating in a Multi-Account Environment

10.

11.

12.

13.

AWS accounts can be associated with an OU. In the previous chapter, we saw how to create
an account within an OU using the GUIL. We can also do this using the terraform aws__
organizations account resource.

Create a new file called accounts. t £ in which we'll create our accounts for this org. Open
it in a text editor such as Visual Studio Code.

Create a new account using the aws_organizations account resource.
We provide the name of the account in the name property and the email that is associated with

the account. This needs to be a unique and valid email. Two accounts, even within the same
AWS organization, can’t share the same email:

resource "aws_organizations account" "test account" {
name = "test-acc"
email = "<insert unique mail>"

We now need to associate this account with an OU. We'll assign it to the test OU by passing
the parent id property:

parent_id = aws_organizations_organizational unit.test.id
Since Terraform can manage the entire life cycle of a resource, this also includes the deletion
of an account. We usually don’t want to close the account when terraform destroy is
called since accidentally deleting an account can result in large data loss and downtime. We
thus set the close _on_deletion property to false. If you want to delete accounts via

Terraform, for example, because you are just experimenting with multi-account setups, set
this property to true:

close on deletion = false

}

With this, we can now run Terraform to create our new OUs. First, initiate the Terraform
working directory. This will download the provider and create a local state file:

terraform init

Next, apply the changes using terraform apply. This should only take a couple of seconds:

terraform apply

After the Terraform script has successfully run, we can view our new OUs and account in the AWS
console. Open up the Organizations page. The following screenshot shows the new OUs as well as
the created account:

Designing AWS organizations

Organizational structure
¥ [J [Root
r-pdyi

» (] [0 sandbox

ou-pdyi-u46ggpz5

¥] O workloads

ou-pdyi-8619dj7f

» [J 3 prod

ou-pdyi-jlkc4qt3

v [[test

ou-pdyi-vu8aTm2x

(J @ test-acc

976193241037 | mn+workloads-test-acc@nlogn.org

Figure 16.3 - Implementation of our workloads OU with sub-OUs for prod and test

Besides workloads, the AWS infrastructure usually also includes some resources that are more on
the infrastructure side than specific to a workload. Examples of these kinds of resources are domains
in Route 53 or network connectivity to on-premises, via either a VPN or Direct Connect. AWS calls
these foundational OUs. Another example of foundational OUs is security. The account that owns the
config rules we discussed in Chapter 16 or the account that owns the S3 bucket into which audit logs
are copied are examples of an account that resides under this OU.

AWS itself defines foundational OUs as “OUs that contain accounts, workloads, and other AWS resources
that provide common security and infrastructure capabilities to secure and support your overall AWS

environment.” The following figure shows our OUs after adding the foundational OUs:

Workloads

Infrastructure

Security

Prod

Test

Figure 16.4 — The OU structure after adding infrastructure and security

355

356

Operating in a Multi-Account Environment

(R
Additional information

The exact setup of your OUs highly depends on the size of your operation. Keep in mind that
accounts can be shifted between OUs, so you can start with a smaller setup and then expand
your OUs as the infrastructure in the cloud expands.

Remember that different SCPs could apply to different OUs. So, a workload that works fine in an
account while being under OU A might no longer work under OU B due to differing restrictions.
- J

With our workloads OU, we'll want to be restrictive. A classic example of an SCP - and one we have seen
in the previous figure - is the restriction of the accounts in an OU to one or a few defined AWS Regions.

However, we sometimes want to allow the exploration of services that might not be available in our
designated Regions. Or we may want to force experimentation outside of the workload accounts. This
is where sandbox OUs, OUs for accounts meant for experimentation outside of hosting any workload
or infrastructure, come into the picture.

Including a previously created OU in Terraform

We have previously created a sandbox OU, so let’s see how we can import a previously created OU
into our Terraform stack so that we can later reference it. To do this, follow these steps:

1. Open the previously created org_setup. t£ file in a code editor such as Visual Studio Code.

2. We¢'ll use a data source to find the previously created OU. The data source is called aws__
organizations account and takes two required arguments: the parent ID, in our case,
this is the root organization, and the name of the OUj; in our case, this is Sandbox:

data "aws_organizations organizational unit" "sandbox" {
parent id = data.aws organizations organization.org.roots[0].
id
name = "Sandbox"

}

3. Inaddition, we'll also create the two infrastructure and security OUs:

resource "aws_organizations organizational unit" "security" {
name = "security"
parent id = aws organizations organizational unit.workloads.id

}

resource "aws organizations organizational unit"
"infrastructure" ({

name = "infrastructure"
parent_id = aws_organizations organizational unit.workloads.id

}

Designing AWS organizations

4. Runterraform apply to apply the new changes:

terraform apply

With this, we now have the OU structure shown in the following figure, which can be accessed
from Terraform:

Workloads Infrastructure Security Sandbox

Prod

Test

Figure 16.5 — OU structure with infrastructure, security, and the
data source for the previously created sandbox OU

Before moving on, let’s use Terraform to attach an SCP to an OU. We'll use the SCP example from the
previous chapter, which only allows EC2 instances to be created in the eu-central -1 (Frankfurt)
and eu-west-1 (Ireland) Regions.

Attaching an SCP to an OU with Terraform
Follow these steps to attach a new SCP:

1. Create a new file called scp . tf in the org setup folder and open it with a code editor
such as Visual Studio Code.

2. We first need to define a new SCP. The resource for this is called aws_organizations
policy. Well need to pass a name, a description, and the j sonencoded policy that we want
to apply. For a more detailed explanation of how this policy works, please see the explanation
in the previous chapter:

resource "aws organizations policy" "ec2 region on_allowed" {
name = "ec2-region-restriction"
description = "Restricts EC2 instance launch to allowed
regions"
content = jsonencode ({
Version = "2012-10-17"
Statement = [

{

Sid = "DenyEC2LaunchOutsideAllowedRegions"

357

358 Operating in a Multi-Account Environment

Effect = "Deny"

Action = [
"ec2:RunInstances",
"ec2:StartInstances",
"ec2:StartInstance*"

]

Resource = "*"

Condition = {
StringNotEquals = {

"aws :RequestedRegion" = [
"eu-central-1",
"eu-west-1"

3. With our SCP defined, we now need to attach it to our workloads OU. The aws_
organizations policy attachment resource takes two arguments: the ID of the
policy that we want to attach and the ID of the OU to which we want to attach the policy. We
can reference both from the resources since both are managed via Terraform:

resource "aws_organizations_policy_attachment" "ec2_region_only_
allowed to workloads"

policy id = aws_organizations policy.ec2 region on allowed.id
target id = aws organizations organizational unit.workloads.id

}

4. After applying the changes, we can see the new policy attached to our workloads OU:

terraform apply

The details page, as shown in the following figure, of our newly created SCP in the AWS console shows
the Region restriction being applied to our workloads OU.

Designing AWS organizations 359

ec2-region-restriction Edit poticy

Policy details

Name
ec2-region-restriction

ARN
arn:aws:organizations::317322385701:policy/o-vza45abptr/service_control_policy/p-ekr86w76

Policy type
Service control policy (customer managed)

Description
Restricts EC2 instance launch to allowed regions

Content Tags
Targets Detach

Name A 1D Type

O workloads ou-pdyi-8619dj7f ORGANIZATIONAL_UNIT

Figure 16.6 — Details page of our newly created policy showing the targets, including the workloads OU

With our restrictions - via the SCP - applied to the workloads OU, we now cover infrastructure-related
accounts, as well as workloads, and we have an OU for experimentation in the sandbox OU. But what
about accounts that require exceptions? This could be accounts that were created before the current
organizational structure was imposed, accounts that come from an acquisition, or simply workloads
that require some sort of exception in order to run. To allow this, we can establish an exceptions OU
that these accounts can be moved to.

Adding the exceptions OU

Let’s create this in Terraform using the previously shown resources:

1. Open the previously created org setup. t £ file in a code editor such as Visual Studio Code.

2. Add the Terraform resources for the exceptions OU:

resource "aws organizations organizational unit" "exceptions" {
name = "exceptions"
parent id = aws_organizations organizational unit.workloads.id

3. Apply the changes using Terraform:

terraform apply

360

Operating in a Multi-Account Environment

With this, our organization now looks like the following figure.

Workloads Infrastructure Security Sandbox Exceptions

Prod

Test

Figure 16.7 - Final org layout including the exceptions OU

With this, we have created an organization layout that follows the best practices from AWS, and
we have seen how we can add accounts, OUs, and SCPs within Terraform. Next, we want to share
resources between accounts.

Sharing resources within an organization using Resource
Access Manager

One downside of spreading resources across multiple accounts is that we need to find a way to share
resources that are used by multiple accounts simultaneously.

A classic example of such a resource is the concept of a shared VPC. In a shared VPC, the VPC (or
subnets of the VPC) is shared out to multiple different accounts. These accounts can then place their
resources, such as EC2 instances or lambdas, into the shared service VPC.

The main benefit of such an approach is the easy network communication between instances deployed in
the different accounts. We'll use AWS RAM to share the subnets of a VPC, created in our management
account, to all accounts in the dev sub-OU of our workloads OU.

(R
Additional information

Whether or not a shared VPC is the right approach for you is an architectural decision. You can
find more details about the pros and cons of a shared VPC in this blog post: https: //aws.
amazon.com/blogs/networking-and-content-delivery/vpc-sharing-
key-considerations-and-best-practices/.

- J

Before we get started, here are two key concepts of RAM:

« RAM deals with resources. It does not support all resources, however, so you'll need to verify
that the resource of the service you want to share out is supported by RAM. The following
documentation page contains the up-to-date list: https://docs.aws.amazon.com/
ram/latest/userguide/shareable.html.

https://aws.amazon.com/blogs/networking-and-content-delivery/vpc-sharing-key-considerations-and-best-practices/
https://aws.amazon.com/blogs/networking-and-content-delivery/vpc-sharing-key-considerations-and-best-practices/
https://aws.amazon.com/blogs/networking-and-content-delivery/vpc-sharing-key-considerations-and-best-practices/
https://docs.aws.amazon.com/ram/latest/userguide/shareable.html
https://docs.aws.amazon.com/ram/latest/userguide/shareable.html

Sharing resources within an organization using Resource Access Manager

o The resources are then shared within a resource share. This resource share defines the resource
that will be shared as well as the sharing account and the consumer.

« Within the resource share, we also define managed permissions that define what actions can
be taken by the consuming account on a shared resource.

Enabling organizational resource sharing in RAM

One benefit of using organizations is that, in RAM, we don’'t have to enumerate all accounts that we
want to share a resource with. Instead of having to create individual RAM sharing for every single
account, we can simply share a resource with an OU.

We first need to create a resource we can share. For this example, we'll create a new VPC in the
eu-central-1 (Frankfurt) Region. Within this VPC, there are three subnets that will then be
shared out to our OU.

Note

For brevity, this example only contains three private subnets. The structure would be the same
for a VPC that also includes public subnets.

Sharing subnets in our VPC via Terraform
To first create the VPC that will be shared, follow these steps:

1. Create a new file called vpc . t £ inside the org_setup folder and open it with a text editor
such as Visual Studio Code.

2. Inside, we'll create a new VPC with a private subnet in each AZ. For a more detailed explanation
of the different components of a VPC, consult Chapter 3:

Get available AZs
data "aws_availability zones" "available" {
state = "available"

Create VPC

resource "aws vpc" "main" {
cidr block "10.0.0.0/16"
enable dns support = true

enable dns_hostnames = true

}

Create private subnets
resource "aws subnet" "private" {

361

362

Operating in a Multi-Account Environment

count = length(data.aws_availability zones.
available.names)

vpc_id = aws_vpc.main.id

cidr block = "10.0.${count.index + 1}.0/24"

availability zone = data.aws_availability zones.available.
names [count . index]

}

Create route table for private subnets
resource "aws_ route table" "private" {
vpc_id = aws vpc.main.id

tags =
Name = "private-rt"

Associate private subnets with private route table
resource "aws_route table association" "private" {
count

length (aws_subnet.private)
subnet id = aws_subnet.private [count.index] .id
route table id = aws_ route table.private.id

}

Now that the resources we intend to share have been created in our AWS account, we can continue
with the RAM setup and start sharing them.

Enabling resource sharing inside organizations

Before we can use our new VPC inside of a share, we'll need to enable RAM sharing to organizations.
To do this, follow these steps:

1. Open the AWS console and navigate to the Resource Access Manager service page.

2. Open the Settings page in the left-hand navigation, as shown in the following screenshot:

Sharing resources within an organization using Resource Access Manager 363

e Resource Access Manager > Settil

Resource Access <
Manager
Shared by me

Resource shares
Shared resources

Principals

Shared with me

Resource shares
Shared resources

Principals

Managed permissions library

Figure 16.8 — Settings in the left-hand navbar

3. Check the Enable sharing with AWS Organizations checkbox and click Save settings on the
lower right, as shown in the following screenshot:

Settings

Settings

Enable sharing with AWS Organizations [7
If you enable sharing with the accounts of your organization, you can share resources without using invitations. You can enable sharing in the organization's management
account. The organization must support all features.

Figure 16.9 — Enable sharing with AWS Organizations

With resource sharing enabled, we can now turn back to the Terraform code and create the share itself.

364

Operating in a Multi-Account Environment

Sharing resources with Terraform

To do this, follow these steps:

1.

Create a new shares. tf file inside the org setup folder and open it in a text editor of
your choice, such as Visual Studio Code or Notepad-++.

We'll first create the resource share itself using the aws _ram resource_share resource.
We need to give the share a name that will also be visible inside the AWS console:

resource "aws_ram resource share" "subnet share" {
name = "private-subnets-share"

We don’t want anyone outside of our organization to be able to receive this resource share.
Hence, we set the allow_external principals flagto false:

allow_external principals = false

We can also tag our resource share, in this example, with a Name tag:

tags = {
Name = "private-subnets-share"

}
}

With the resource share created, the next step is to create an association between the resource
we want to share and the resource share we have just created. This is done via the aws_ram
resource_association resource in Terraform:

resource "aws_ram resource association" "subnet share" {

We need to create such an association for each of our subnets, so we use the count attribute
on the length of our previously created subnet list and use the counter to iterate over all of the
previously created subnets:

count = length(aws_subnet.private)

resource_arn = aws_subnet.private[count.index] .arn

We also need to define which resource share we want to attach this resource to:

resource_share arn = aws_ram resource_ share.subnet share.arn

}

With our resource associated with our resource share, we now need to associate the resource share
with our OU. We do this via the aws_ram principal association Terraform resource.

Here, we only need to pass the principal, the test OU that is managed by Terraform, and the
resource share ARN that we have just created:

Sharing resources within an organization using Resource Access Manager

10. With this, we can now apply these changes:

resource "aws ram principal association" "ou share" {

principal = aws_organizations organizational unit.

test.arn

resource share arn = aws_ram resource share.subnet share.arn

terraform apply

After the Terraform update has successfully run through, we can navigate to the RAM service in the
AWS console to verify that the resource has been shared. Navigate to the RAM service, and on the

left navigation pane, select Resource shares under Shared by me.

In the overview, you'll see all the shares from your account. The details page, also shown in the following

screenshot, indicates the shared resources — in this case, our subnets.

private-subnets-share (a02c5446-9321-431¢-a891-b5974f884e76)

Details and information relating to this resource share.

Summary
Name Owner
private-subnets-share 317322385701

1D

a02c5446-9321-431c-a891-

ARN

[0 arn:awsiram:eu-

b5974f884e76

central-1:317322385707:resource-
share/a02c5446-9321-431c-a891-
b5974f884e76

Shared resources (3)

Created on
2025/02/12

Allow external principals
No

‘ Q, Filter by text

O

0O 0 0o

Resource ID
subnet-014b76c37%e205a8a [2
subnet-0d8214dcf308c9be3 [2

subnet-06d9f37d9d4adc2cc [

Resource type

ec2:Subnet

ec2:Subnet

ec2:Subnet

Status
@ Active

Status
@ Associated
@ Associated

@ Associated

Figure 16.10 — Resource share details page showing the shared subnets

Disassociate

1 o

We can also verify that the resources have been shared by logging in to the account we previously
created inside the dev OU.

Additional information

See the Logging in to the AWS console of our new account by assuming a role subsection in the
previous chapter for a step-by-step guide on how to open up a new session in the dev account.

365

366

Operating in a Multi-Account Environment

Inside the account, we can first navigate to the RAM console and see that we have received the
resource share. Notice the differing account IDs of the owner and the account currently logged in in
the following screenshot:

B 0 @ © eoopelrancuyy Aeount

Org:

e Resource Access Manager 3 Shared with me: Resource shares ®
Resource Access % Shared with me: Resource shares
Manager
Resource shares my account has access to,
Shared by me
Resource shares (1) ©
Resource shares
Shared resources | Q Fitter by text ond property value . ®
Evincipals Name i Oviner Status
private-subnets-share 20265446-9321-43 1¢-a891-b59741884e76 317322385701 © Active

Shared with me

Resource shares

Shared resources

Principals

Managed permissions library

Settings

Figure 16.11 — Resource share in an account that is part of our target OU

We can also verify that we see the VPC (and its subnets). This is done by navigating to the VPC
service. The overview — shown in the following screenshot - indicates the VPC that the subnets are
part of. The (shared) text under the differing owner ID indicates that this is a VPC that was shared
out to this account.

Account ID: 9761-9324-1037 v
Europe (Frankfurt) ¥
rle|s 4 OrganizationAccountAccessRole @ 976193241037
14§fb19869fec2 o aQ
vpc-05914ffb19869fcc2
Details info
VPCID State Block Public Access DNS hostnames
6] vpc-05914ffb19869fcc2 @ Available © off Enabled
DNS resolution Tenancy DHCP option set Main route table
Enabled default dopt-20a7bddb -
Main network ACL Default VPC IPv4 CIDR 1Pv6 pool
acl-0fae7ea7f096ffec3 No 10.0.0.0/16 -
IPv6 CIDR (Network border group) Network Address Usage metrics Route 53 Resolver DNS Firewall rule Owner ID
= Disabled groups B 317322385701
= (shared)

Figure 16.12 - Details page of our shared VPC

This shows how we can share a VPC within an organization. But what about use cases where we don’t
want to roll out an entire organization? In the next chapter, we’ll see how RAM works with sharing
just between accounts.

Sharing resources within an organization using Resource Access Manager

Cross-account sharing for use cases with small amounts of AWS
accounts

We have seen how we can share resources within an organization, but we also want to see how the
same can be achieved with RAM but without organizations.

In the previous chapter, we initially had to enable RAM sharing within the organization. The step that
this automated away is the acceptance of a RAM share. The consumer account does not (unless you

are part of the same organization and resource sharing is enabled) automatically accept an incoming
RAM share.

In this chapter, we’ll walk through the Terraform code that creates a resource share, as well as how to
automate the acceptance of the resource share.

The first steps remain the same. We also need to create a resource share and associate our subnets with
that resource share through an association, as shown in the following code snippet:

resource "aws_ ram resource share" "subnet share" {
provider = aws.source
name = "private-subnets-share"
allow external principals = true
tags = {
Name = "private-subnets-share"

Share private subnets

resource "aws ram resource association" "subnet share" {

provider = aws.source

count = length (aws_subnet.private)

resource_arn = aws_subnet.private [count.index] .arn
resource_share arn = aws_ram resource share.subnet share.arn

}

The difference now lies in the principal association. We can start by defining a local variable that
contains a list of all the accounts we want to share our resource with:

locals {
target account ids = [
"<add your account ids heres>",

367

368

Operating in a Multi-Account Environment

We can then iterate over all of these and create a new principal association for each:

resource "aws_ram principal association" "account share" {

provider = aws.source
for each = toset (local.target account ids)
principal = each.value

resource_share arn = aws_ram resource_ share.subnet share.arn

In the preceding example, we use the built-in toset () function to remove any potential duplicates
since the same resource share can only be associated with a principal once. The for each argument
defines the set we want to iterate over and we can access the value in each iteration, in this case, the
account ID we want to create the principal association for, via the each . value variable.

On the account that owns the resource, this is all we need to do. But on the consumer side, we also
need to accept the incoming resource share. We could do this manually in the AWS console, but the
Terraform provider also offers the aws_ram resource share accepter Terraform resource.

This resource allows us to programmatically accept incoming shares. We first define the ARN of the
incoming share:

resource "aws_ram resource share accepter" "subnet share accepter" {
share arn = aws_ram resource share.subnet share.arn

Next, we don’t want to accept all incoming shares but only the ones we are expecting. Since we are not
part of an org, we have no concept of “trustworthy” AWS accounts. We thus use the life cycle block
to define a pre-condition - in this case, that the name of the share is private-subnet-share:

Important: only accept shares that match our expected pattern
lifecycle {
precondition {

condition = aws_ram resource share.subnet share.name ==
"private-subnets-share"

error message = "Share name does not match expected pattern"

Instead of relying on the name, we could also verify the account ID of the provider account:

lifecycle {
precondition {

condition = split(":", aws_ram resource share.subnet share.
arn) [4] == "<insert account id of sharing account>"

error message = "Share is not from the expected AWS account"

Summary

With this, you have seen how you can do resource sharing without using AWS organizations. This is
a reasonable method to use when sharing between only a few accounts, but as soon as you introduce
more than a few accounts, it is advisable to look into setting them up via organizations and then
sharing with OUs, as described previously.

Summary

In this chapter, we discussed the overall layout of an AWS organization, including some best practices
to follow. We then saw how organizations - including OUs, sub-OUs, and AWS accounts - can be
programmatically created using Terraform.

The chapter concluded with a guide on using AWS RAM - both within an organization and without
an organization — to share resources between AWS accounts. In the next chapter, we will combine
everything we have learned, not just in this chapter but throughout the entire book, to set up an
application from end to end.

369

17
End-to-End Deployment of an

Application

In the previous chapters of this book, you have been introduced to many different services that all
fit together as building blocks for modern applications. You have seen how EC2 - together with
auto-scaling and a load balancer - can be used to provide scalable compute. We have also covered
organizational aspects such as multi-account setups with AWS Organizations and how we can use
pipelines to deploy infrastructure based on pushes to a GitHub repository.

In this chapter, we'll tie all the learnings together into a worked example of how we can deploy an
application into AWS. We'll leverage the tools and techniques explored throughout this book in
the process.

In this chapter, were going to cover the following main topics:
« Setting up an AWS Organization including Single Sign-On
 Building a CI/CD pipeline that automatically deploys our Terraform to different accounts

o Deploying and updating the sample application

Technical requirements

Before following this section, please create an AWS account for yourself. You can sign up at aws .
amazon.com. A basic understanding of AWS - for example, what a service is — will be beneficial.

A basic understanding of Python will help with the programming-based sections of this chapter.

A basic understanding of IaC tools such as Terraform will be beneficial. You can find more information
about Terraform in Chapter 1.

http://aws.amazon.com
http://aws.amazon.com

372

End-to-End Deployment of an Application

A basic understanding of the Linux command line will help you to follow along with this chapter.
You'll also need the following software installed on your system:

o Python version 3.8 or later

o Node.js version 14.15.0 or later

Both of these version requirements are at the time of writing in May 2024. You can check the following
links for the required versions:

o For Python: https://boto3.amazonaws.com/vl/documentation/api/latest/
guide/quickstart.html#install-or-update-python

o ForNodejs:https://docs.aws.amazon.com/cdk/v2/guide/getting started.
html#tgetting started prerequisites

All scripts from this section can be found at the following GitHub link:

https://github.com/PacktPublishing/AWS-for-System-Administrators-
Second-Edition

The CiA video for this chapter can be found at https: //packt.link/dYGOT

What we will build in this chapter

The solution we’ll be building throughout this chapter is a simple web application that offers an
API for a click counter that stores its values inside of a Postgres database. While — from a software
development perspective — this isn't a big application, it does cover many of the major infrastructure
and deployment and automation aspects.

(R
Note

Throughout this chapter, we'll make use of tools and techniques explored throughout this book.
Wherever we are using knowledge previously covered in a chapter, there’ll be a note where you
can find more detailed information.

Please note that the explanations will only cover new content, and this chapter won’t cover
aspects that we have previously covered.

It is thus advisable that you have read the previous chapters or are willing to jump back in case
something is unclear.

https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html#install-or-update-python
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html#install-or-update-python
https://docs.aws.amazon.com/cdk/v2/guide/getting_started.html#getting_started_prerequisites
https://docs.aws.amazon.com/cdk/v2/guide/getting_started.html#getting_started_prerequisites
https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition
https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition
https://packt.link/dYGOT

What we will build in this chapter

The following figure shows the application architecture that we’ll deploy:

Auto Scaling group |

DB Instance o DB Instance .

EC2|Instance : EC2|Instance '

v m:'ri\rate subnet . . mPrivate subnet . :
Amazon o ; :

RDS o Y

: i

H .

AWS Secrets Manager

Figure 17.1 — Application architecture

For our compute, we'll leverage EC2 instances inside of an Auto Scaling group. To improve resiliency,
these instances are spread across three different Availability Zones and a load balancer is used to send
traffic between them.

For keeping our counter values, we'll use an Aurora Postgres deployment with two instances running
inside the private subnet of our application. All secrets and configurations are handled through AWS
Secrets Manager.

Instead of just deploying this application into one AWS account, we'll implement a simple organizational
structure with three different accounts:

o The production account will contain the productive (i.e., user-facing) version of our infrastructure
and application.

« The staging account will be used to test changes to our application.

373

374

End-to-End Deployment of an Application

o The deployment account is used to orchestrate the deployment. The pipeline used for deployment
will reside inside of this account.

The source code for our application, as well as the code for the infrastructure, resides in a GitHub
repository with two branches. Pushing changes to the main branch will update the production account
while changes to the staging branch will update the staging environment.

Additional information

We'll be reusing the repository and code from Chapter 14.

Implementing Single Sign-On (SSO) with AWS Identity Center

So far in this book, we have used IAM users with long-lived credentials whenever we logged into our
AWS account. Their ease of use makes them ideal for playing around and testing things. However, for
production workloads, AWS itself reccommends - in its best practices — using temporary credentials
from an identity provider instead of the long-lived credentials provided by an IAM user.

e Y
Additional information

Long-lived credentials are credentials that don’t have an expiry time. Once obtained, they are
valid for a long time or indefinitely. This makes the authentication process very easy but also
prone to error. For example, a common issue with this is that developers commit their credentials
into (possibly public) Git repositories and thus leak long-lived credentials.

This is why we want to use short-lived credentials. In case a user accidentally submits these
credentials into a version control system or they are compromised in a different way, they only
retain a limited validity.

You can read more about this recommendation in Security best practices in IAM from AWS
here: https://docs.aws.amazon.com/IAM/latest/UserGuide/best-
practices.html

- J

In this section, we'll set up IAM Identity Center to manage the human users (such as your developers
or DevOps engineers) that have access to the different AWS accounts. IAM Identity Center - formerly
known as AWS SSO - allows you to define users, user groups, and their access levels for different
accounts within an AWS Organization.

AWS Identity Center comes with its own user management (which we’ll use in this chapter), but you
can also connect it to external identity providers such as Active Directory. This allows you to have
only one company-wide inventory of users.

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

What we will build in this chapter 375

Setting up Identity Center using Terraform

Let’s start by using Terraform to enable AWS Identity Center for our organization, and see how we
can manage users, user groups, and their permissions within an account covered by the organization.

For more information on AWS Organizations, please reference Chapter 16, Operating in a
Multi-Account Environment.

Attention

This walk-through assumes that you have set up an organization as shown in Chapter 16,
Operating in a Multi-Account Environment. Before proceeding, please walk through the steps
in that chapter.

We'll first need to enable AWS Identity Center in the AWS Console. To do this, follow these steps:

1. Open the AWS Console in the root account of your organization and select your preferred
region (for example, eu-central-1).

2. Inthe search bar, search for Identity Center and navigate to the Identity Center service.

3. Ifyou haven’t yet enabled AWS Identity Center, you'll be greeted with a button to Enable IAM
Identity Center, as shown in the following screenshot:

Enable IAM Identity Center

Streamline your workforce users’ access
to AWS managed applications and AWS
accounts by enabling an instance of 1AM
Identity Center.

AWS recommends reviewing the |AM
Identity Center prerequisites [2

| Enable

Figure 17.2 — Enabling IAM Identity Center in the AWS Management Console

With Identity Center enabled, we can now use it from within Terraform.

376 End-to-End Deployment of an Application

To create the Terraform scripts required for this, follow these steps:

1.

Create a new folder called click project - this will be the project folder for this entire
project. Inside the click project folder, create a folder called infrastructure, which
will contain all the infrastructure scripts. Again, inside of the infrastructure folder,
create a folder called organization. This will contain the Terraform scripts used for the
initial account setup. This includes the AWS organization itself, as well as the Organizational
Units (OUs) that we'll create beneath it. We discussed AWS Organizations and OUs in detail
in the previous chapter:

mkdir -p click project && \

mkdir -p click project/infrastructure && \

mkdir -p click project/infrastructure/organization && \
cd click project/infrastructure/organization

Inside the organization folder, create a new file called main. t £ and open it in a code
editor such as Visual Studio Code.
We'll start by defining the information for the aws provider:

terraform {
required providers

aws = {
source = "hashicorp/aws"
version = "~> 5.0"
required version = ">= 1.2.0"

}

provider "aws" {
region = "eu-central-1" # Change to your preferred region

}

With Identity Center enabled, we can use the aws _ssoadmin_instances data source to
access its properties, such as the identity store ID or the ARN of our Identity Center instance,
from our code:

Enable AWS IAM Identity Center
data "aws_ssoadmin_ instances" "identity center" {}

Next, we create a new user — inside of the default user directory that comes with Identity Center:

Configure Identity Center to use the built-in identity store
(internal directory)

resource "aws_identitystore user" "example user" ({

identity store id = tolist (data.aws ssoadmin instances.
identity center.identity store ids) [0]

What we will build in this chapter

6. We need to assign a display name, username, and properties such as the name and emails
that are associated with this user:

display name "Marcel Neidinger"

user name = "mn-dev@nlogn.org"
name {

given_name = "Marcel"

family name = "Neidinger"

emails {
value

"mn-deve@nlogn.org"
primary = true

7. Next, we can create a centrally managed permission set. This is the IAM policy that will be
assigned to a group of users. In this example, we'll create a permission set for our admin users.
We also define that the credentials obtained from this permission group will be valid for 12
hours. Having different validity periods - for example, allowing longer credentials for read-
only accounts — can make it more convenient to use this setup since our users don’t have to
constantly reauthenticate:

Create a permission set (defines a set of permissions that can
be assigned to users)

resource "aws ssoadmin permission set" "admin" {
name = "AdministratorAccess"
description = "Administrator access permission set"
instance arn = tolist (data.aws_ssoadmin instances.

identity center.arns) [0]
session duration = "PT12H" # 12-hour session

8. With the permission set defined, we can now attach a policy to give the permission set actual
permissions. In this example, we'll attach the Amazon managed AdministratorAccess
policy that we previously also attached to our IAM users:

Attach AWS managed policy to the permission set
resource "aws_ ssoadmin managed policy attachment" "admin policy"

instance_arn = tolist (data.aws_ssoadmin_ instances.
identity center.arns) [0]

managed policy arn

| "arn:aws:iam: :aws:policy/
AdministratorAccess"

permission set arn = aws_ssoadmin permission set.admin.arn

}

377

378 End-to-End Deployment of an Application

9. Instead of assigning a permission set to an individual user in Identity Center, we'll use a user
group - in this case, called admin_ group. Users added to this group will gain the assigned
permissions within the assigned accounts:

Create a group in the internal directory
resource "aws_identitystore group" "admin group" {
display name = "Administrators"
description

"Group for administrators"

identity store id = tolist (data.aws ssoadmin instances.
identity center.identity store ids) [0]

}

10. Finally, assign the user to the group:

Add the user to the group
resource "aws identitystore group membership" "admin membership"

{

identity store id = tolist (data.aws ssoadmin instances.
identity center.identity store ids) [0]

group id = aws_identitystore group.admin group.group
id

member id = aws_identitystore user.example user.user
id

}

With Identity Center activated and users created, we'll next create three AWS accounts. For this, we'll
create a new OU called Environments and then create the three AWS accounts underneath it.
Refer to Chapter 16 for more detailed information on the specific Terraform commands.

1. Atthebottom of themain. tf file, add the following resources. First, we use a data resource
to get the current AWS organization:

data "aws_organizations organization" "current" {}

2. Next, we create the OU:

resource "aws_organizations organizational unit" "environments"

name = "Environments"

parent id = data.aws organizations organization.current.
roots[0] .id # Use data resource instead of variable

}

3. Finally, create the three different accounts within the OU. Please reference the previous chapter
for a more detailed explanation of the different attributes in this Terraform script:

resource "aws organizations account" "deploy" {
name = "Deploy"

What we will build in this chapter

email = "<insert unique mail>"

role name = "OrganizationAccountAccessRole" # Default
role for cross-account access

parent id = aws_organizations organizational unit.
environments.id

Prevent account from being destroyed when using Terraform

Remove this for the initial creation, then uncomment for
subsequent runs

}
Staging account
resource "aws organizations account" "staging" {
name = "Staging"
email = "<insert unique mail>"
role name = "OrganizationAccountAccessRole"
parent_id = aws_organizations_organizational_unit.

environments.id

}

Production account
resource "aws organizations account" "production" {

name = "Production"

email = "<insert unique mail>"

role name = "OrganizationAccountAccessRole"

parent id = aws_organizations organizational unit.
environments.id

}

With our accounts created, we can now assign the previously created account to our admin
group. This will grant users in that group the permissions defined by the previously created
(and referenced) permission set. We define this permission set via the permission set
arn property and reference the principal we want to assign this account to. In our example,
this is the previously created group (referenced via the principal id property), and
principal type will need to be set to GROUP:

resource "aws ssoadmin_ account assignment" "deploy account
assignment" {

instance_arn

= tolist (data.aws_ ssoadmin instances.
identity center.arns) [0]

permission set arn = aws_ssoadmin permission set.admin.arn

principal id = aws_identitystore group.admin group.group id

principal type "GROUP"

379

380 End-to-End Deployment of an Application

5. We also need a target, in this case of type (specified via the target type property) AWS
ACCOUNT, and we pass the account ID from our newly created deployment AWS account:

target id = aws_organizations account.deploy.id
"AWS ACCOUNT"

target type

}

6. We repeat this with our staging account:

resource "aws_ssoadmin account assignment" "staging account

assignment"
instance_arn =

identity center.arns) [0
permission set arn = aws_ssoadmin permission set.admin.arn

tolist (data.aws_ssoadmin_instances.
]

principal id = aws_identitystore group.admin group.group id
principal type = "GROUP"
target id = aws_organizations_ account.staging.id

target type "AWS ACCOUNT"

}

7. With our basic structure defined, let’s deploy this to AWS and then see how we can log into one
of these accounts. To make it easier for us to find the relevant resources, we'll introduce two
outputs. One that contains the AWS account ID of the staging account and one that contains
the login URL for our Identity Center instance:

output "staging account id"
value = aws_organizations_ account.staging.id
description = "Account ID of the staging account"

}

output "identity center user portal" {

value = "https://${substr(tolist (data.aws ssoadmin
instances.identity center.identity store ids) [0], 0, 10)}.
awsapps.com/start"

description = "The URL of the AWS IAM Identity Center user
portal"

}

8. Initiate the Terraform workspace:

terraform init

What we will build in this chapter

9. 'Then deploy the entire infrastructure using terraform apply:

terraform apply

Navigate to the Identity Center URL that is shown in the output from Terraform. You’ll be asked for
a username and password. Since this is the first time you are logging into this new account, use the
Forgot password flow to reset your password. After setting a new password, you’ll be asked to create
an MFA device (for example, via the Google Authenticator app). Follow the steps to add multi-factor
authentication to this user account.

With this initial setup concluded, you’ll be redirected to an overview page (shown in the following
screenshot) that contains all the accounts and their roles that you have access to.

WS access portal @ = B, Maresd ¥

AWS access portal

Accounts Applications

AWS accounts (2)

* & Steging
103494808 | mn-click_button-stagl

Figure 17.3 — Access portal with our two accounts we have access to

Besides using the login portal to get into the graphical interface, we can also use the SSO login to
authenticate the CLI. To do this, follow these steps:

Note
This setup assumes that you have installed the AWS CLI as shown in the first chapter.

1. Open up a terminal and initiate the SSO configuration:
aws configure sso
2. You'll be prompted for some information that is based on your deployment. For SSO session
name (recommended), use a name for your SSO configuration - for example, click-sso.

3. 'The SSO start URL is the URL from your Terraform output that you previously used to reset
the password.

4. For SSO region, select the region you used for your SSO instance - for example, eu-central-1.

381

382

End-to-End Deployment of an Application

5. Leave the default for the SSO registration scopes and hit Enter.

550 session name (Recommended): click-sso

550 start URL [Monel: https 99676c5891 . awsapps.com/start
550 region [Nonel: t:

550 registration s ount:access]:

Attempting to automatic open the 580 authorization page in your default browser.
If the browsar does not open or you wish to use a different device to authorize this request, open the following URL:

Figure 17.4 - Sample input for the local SSO configuration

This will redirect you to the browser, where you’ll be asked to authorize the AWS CLI to interact with
your SSO instance. On the authorization screen, click Allow access.

dWS

N/

Allow botocore-client-click-sso to access your data?

By choosing Allow access, you agree to allow botocore-client-click-sso to access the following:

Applications and AWS accounts
(32 Show details
Deny access Allow access

Figure 17.5 - The authorization screen for the AWS CLI

Back on the CLI, you'll be presented with the two different accounts - as shown in the following
screenshot — that you have access to.

here are 2 AWS accounts available to you.

Deploy, mn-click_button-deploy@nlogn.org (855289842796)

Figure 17.6 — The list of accounts you have access to

Select the deploy account and hit Enter to accept the CLI default client region and CLI default output
format. For the CLI profile name - as shown in the following screenshot — use an easy-to-remember
profile name such as click-deploy-Admin.

What we will build in this chapter

here are 2 AWS accounts available to you.

sing the account ID 855289842796

he only role available to you is: AdministratorAccess
sing the role name "AdministratorAccess"

LI default client Region [eu-central-1]:
LI default output format [Nonel: json
LI profile name [AdministratorAccess-855289842796]: click-deploy—-Admin

Figure 17.7 — Profile configuration for our SSO-based account login

We can now use the profile flag, when interacting with the AWS CLI, to specify which profile (and
thus which role in which account) to use. Try this out by running the following command:

aws sts get-caller-identity -profile click-deploy-Admin

Your output should look something like this and show that the CLI command was run under the assumed
role of AdministratorAccess with your SSO user (nmn-deve@nlogn.org in this example):

{

"UserId": "AROA40OIZ7JRWNEHW7TTSL:mn-devenlogn.org",
"Account": "855289842796",
"Arn": "arn:aws:sts::855289842796:assumed-role/AWSReservedSSO

AdministratorAccess e275eb5961bac439/mn-devenlogn.org"

}

Setting up the pipeline

In this section, we'll set up our pipeline - but before we can do this, we'll need to create an IAM role
that allows our deployment account to assume it (cross-account access). We'll then use that role
and its attached policy to give the pipeline - running in the deployment account - enough rights to
run Terraform.

Before we do this, let’s see how we can also modify the existing account assignment and include the
production account in the list of accounts our SSO user has access to. To do this, we'll need to modify
themain.tf filein infrastructure/organization/.

Add the following account assignment to also let the production account be managed by members
of the admin group:

resource "aws_ssoadmin_account assignment" "prod account assignment" {

instance arn = tolist (data.aws ssoadmin instances.identity
center.arns) [0]

permission set arn = aws_ ssoadmin permission set.admin.arn

principal id = aws_identitystore group.admin group.group id
principal type = "GROUP"

383

384

End-to-End Deployment of an Application

target id aws_organizations account.production.id
target type = "AWS ACCOUNT"

}

After running terraform apply, you should now have access to all three accounts — as shown
in the following screenshot:

AWS access portal

A ts Applications

AWS accounts (3)

k[Deploy

2796 | mn-click_butten-deployginiogn.org

B 3 Production
444353622417 | mn-click_button-prod@nlogn.org

* (@ Staging
518103424808 | mn-click_bu Qianiagnang

Figure 17.8 — Access to all three AWS accounts in the admin portal

You can now use the admin portal to log into the different accounts and create a IAM role called
TerraformDeploymentRole in the staging and production accounts. The policy to attach can
be found in the GitHub repository for this chapter named cross_account role.json.

Requirement

This section assumes that you have successfully set up a GitHub connection and a CodeBuild
project in your deployment account. Follow the instructions in Chapter 13, under the Connecting
Your GitHub Account section, to complete this task.

With the role in the two target accounts created, we now need to modify the role that our CodeBuild
project is using and attach an additional policy that allows it to assume these roles in the staging and
production accounts.

To do this, open the IAM console in your deployment account and identify the CodeBuild role. To this
role, attach an inline policy (for example, CrossAccountAccessRole) with the following content:

{

"Version": "2012-10-17",
"Statement": [
"Effect": "Allow",

"Action": [

What we will build in this chapter

"sts:AssumeRole"
] I
"Resource": [

"arn:aws:iam: :<ID of your staging accounts>:role/
TerraformDeploymentRole",

"arn:aws:iam::<id of your production accounts>:role/
TerraformDeploymentRole"

]

Requirement

The following section assumes that you have cloned your application repository locally, as
described in Chapter 14.

Next, we'll need to modify our buildspec.yaml file. Recall that this file defines the steps that our
CodeBuild project will run through upon every step. The basic flow is the following:

1. Identify which environment to deploy to based on the branch we are pushing to.
2. Define the credentials (via the assumed role) based on what environment we are deploying to.

3. Runterraform apply.
In the buildspec.yaml file, this process then looks like this:

1. Openup thebuildspec.yaml file in your cloned repository from Chapter 14 and replace
it with the instructions from the following steps.

2. In the environment, we define our PROD and STAGING account IDs and also the role that
we'll assume in these accounts:

version: 0.2
env:
variables:

PROD_ACCOUNT ID: "YOUR PROD ACCOUNT ID" # Replace with your
production account ID

STAGING ACCOUNT ID: "YOUR STAGING ACCOUNT ID" # Replace with
your staging account ID

ROLE NAME: "TerraformDeploymentRole"

385

386 End-to-End Deployment of an Application

3. Theinstall phase is almost the same as in the previous chapter - the only difference is that we are
also installing jg. We'll use j g later on to extract specific values from a JSON-encoded dictionary:

phases:
install:
commands :
- echo "Installing Terraform version ${TF VERSION}"

- wget -O terraform.zip https://releases.hashicorp.com/
terraform/1.10.3/terraform ${TF VERSION} linux amdé4.zip

- unzip terraform.zip

- mv terraform /usr/local/bin/

- terraform --version

- apt-get update && apt-get install -y jq

4. Next, we determine which branch the build was triggered from. We first check that the trigger
was indeed a push and then read the CODEBUILD WEBHOOK_ HEAD REF environment
variable, which contains the branch reference. If it is the main branch, we set the target to
production and set the target account ID to the previously defined PROD ACCOUNT _ID:

pre build:
commands :
-
if [”$CODEBUILD_WEBHOOK_EVENT" = "PUSH"]; then
if ["$CODEBUILD WEBHOOK HEAD REF" = "refs/heads/main"
1; then

export TARGET ACCOUNT ID=$PROD ACCOUNT ID
export ENVIRONMENT="production"

5. Ifitis the staging branch, we set the target accordingly, and for all other branches, we do not
do any deployment and end the pipeline execution:

elif ["$CODEBUILD WEBHOOK HEAD REF" = "refs/heads/
staging"]; then
export TARGET_ACCOUNT ID=$STAGING ACCOUNT_ID
export ENVIRONMENT="staging"
else

echo "Branch ${CODEBUILD WEBHOOK HEAD REF} is not
configured for deployment"

exit 0
fi

6. Next, we assume the cross-account role (i.e., the Terraform role in the respective PROD or
STAGING account):

echo "Assuming role for ${ENVIRONMENT} account"

CREDENTIALS=S (aws sts assume-role --role-arn
arn:aws:iam: :${TARGET ACCOUNT ID}:role/${ROLE NAME} --role-
session-name TerraformDeploySession)

What we will build in this chapter

7.

Based on the output from STS, we can set the (short-lived) AWS credentials inside of this
CodeBuild worker:

Set AWS credentials for this session

export AWS ACCESS KEY ID=$(echo $CREDENTIALS | jq -r
' .Credentials.AccessKeyId')

export AWS SECRET ACCESS KEY=$ (echo $CREDENTIALS | jg
-r '.Credentials.SecretAccessKey')

export AWS_SESSION_TOKEN:$(eChO SCREDENTIALS | jq =1
' .Credentials.SessionToken')

echo "Successfully assumed role for ${ENVIRONMENT}
account"

else
echo "Not a webhook push event - skipping deployment"
exit 0

fi

Next, we initialize terraform and validate the build plan:

Initialize Terraform with the target environment
- terraform init
- terraform validate

To then build the project, we'll run Terraform in our staging and production environments:

build:
commands :

- echo "Planning Terraform changes for ${ENVIRONMENT}
environment"

- terraform plan -out=out.tfplan

Only apply changes on push events to configured branches

if ["$CODEBUILD_WEBHOOK_EVENT" = "PUSH"]; then
if ["$CODEBUILD WEBHOOK HEAD REF" = "refs/heads/main"
1 || ["$CODEBUILD WEBHOOK HEAD REF" = "refs/heads/staging"];
then
echo "Applying Terraform changes to ${ENVIRONMENT }
environment"

terraform apply -auto-approve out.tfplan
fi
else
echo "Not a webhook push event - skipping apply"
fi

387

388

End-to-End Deployment of an Application

10. And finally, we store artifacts such as the generated Terraform plan:

reports:
terraform plan:
files:

- out.tfplan
base-directory:
file-format: TerraformPlan

artifacts:
files:
- out.tfplan
- terraform.tfstate

- l**/*v

Now, to deploy the infrastructure, replace the main. tf and backend. t £ file with the samples
provided at this GitHub link: https: //github.com/PacktPublishing/AWS-for-System-
Administrators-Second-Edition/blob/main/chl7/sample application/.

The main. t £ file simply creates the infrastructure seen in our sample architecture using EC2 and
other components we already know.

For the backend, there is one slight variation. We use an account-specific S3 bucket to host our
Terraform state.

With the three files (main. t f,backend. tf, and buildspec.yaml) changed locally, it is time
to commit them to GitHub.

After pushing the new code, you should see a deployment running in your CodeBuild project, as well
as the infrastructure being deployed in your production account.

Summary

In this chapter, you have seen multiple concepts that were previously covered in the book interlinked
together. In addition, the chapter introduced AWS Identity Center as the preferred method for managing
user credentials and how the concepts of Identity Center - together with Organizations — can be used
to deploy well-defined access to your AWS accounts.

In this book, we have covered several of the key aspects of operating and automating applications
within AWS.

Thank you for reading this book and I hope you have picked up some valuable learnings along the
way. How do you proceed from here? Here are a few ideas:

o Read through the AWS Whitepapers to expand your knowledge of best practices — you can
find the library here: https://aws.amazon.com/whitepapers/

https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition/blob/main/ch17/sample_application/
https://github.com/PacktPublishing/AWS-for-System-Administrators-Second-Edition/blob/main/ch17/sample_application/
https://aws.amazon.com/whitepapers/

Stay Sharp in Cloud and DevOps — Join 44,000+ Subscribers of CloudPro

Have a look at the other books on AWS available from Packt: https://www.packtpub.
com/en-us/search?g=aws&country=us&language=en

Build hands-on projects - if you need inspiration, check out AWS Cloud Projects by Ivo Pinto
and Pedro Santos: https://www.packtpub.com/en-us/product/aws-cloud-
projects-9781835889282.

I wish you all the best on your cloud journey!

Stay Sharp in Cloud and DevOps - Join 44,000+
Subscribers of CloudPro

CloudPro is a weekly newsletter for cloud professionals who want to stay current on the fast-evolving
world of cloud computing, DevOps, and infrastructure engineering.

Every issue delivers focused, high-signal content on topics like:

AWS, GCP & multi-cloud architecture

Containers, Kubernetes & orchestration

Infrastructure as Code (IaC) with Terraform, Pulumi, etc.
Platform engineering & automation workflows

Observability, performance tuning, and reliability best practices

Whether you're a cloud engineer, SRE, DevOps practitioner, or platform lead, CloudPro helps you
stay on top of what matters, without the noise.

Scan the QR code to join for free and get weekly insights straight to your inbox:

]

https://packt.link/cloudpro

389

https://www.packtpub.com/en-us/search?q=aws&country=us&language=en
https://www.packtpub.com/en-us/search?q=aws&country=us&language=en
https://www.packtpub.com/en-us/product/aws-cloud-projects-9781835889282
https://www.packtpub.com/en-us/product/aws-cloud-projects-9781835889282
https://packt.link/cloudpro

A

Amazon Machine Image (AMI) 80, 126
Amazon RDS 146, 147
database, deleting 157, 159
integrating with AWS Secrets Manager, to
rotate database credentials 179-183
Amazon Resource Name (ARN) 20, 29, 175
components 29
Amazon SNS 216
CloudWatch alert, creating with
notifications 219-222
consumer 216
forwarding Lambda function,
writing 224-228
notifications, sending to Slack 222, 223
publisher 216
topic, creating 216-218
application layer 106
Application Load Balancer (ALB) 104
HTTPS listener, adding 114-116
NLB, deploying 116-121
setting up 108-110
TLS certificate, requesting 112, 113
used, for handling HTTPS traffic 110
used, for setting up custom
domain name 111,112

application programming interface (API) 3

Index

Aurora 147
automated deployment
with AWS CodeBuild 280
with Terraform 280
auto scaling
types 124
using, consideration 124-126
auto scaling group (ASG) 126
creating, in AWS console 132-137
creating, in Terraform 138-144
auto scaling, types
horizontal scaling 124
vertical scaling 124
Availability Zone (AZ) 27, 50, 253
AWS Auto Scaling 123
AWS backup 229, 230
automation, creating with tags 231-238
automation, creating with terraform 231-238
key concepts 231
methods, creating 230
AWS CDK
additional information 20
construct 20, 21
exploring 15
installing 15, 16
project, writing and deploying 16-20

392

Index

AWS CLI
commands, structure 9, 10
installing 8,9
used, for creating IAM policy 37, 38
used, for creating IAM user 28, 29
AWS CodeBuild
code deployment 290-299
GitHub account, connecting 280
Terraform backend, setting up 288-290
used, for automated deployment 280
AWS Config
rule, creating to detect instances
in other regions 342-347
using, to detect non-compliant
resources 340-342
AWS Console
ASG, creating 132-137
launch template, creating 127-131
logging into, for new account by
assuming role 330-333
new policy, creating 333-340
PostgreSQL database, creating 147-156
SCPs, enabling 333-340
used, for creating EC2 instance 80-88
AWS IAM 26
AWS Identity Center
setting up, with Terraform 375-383
used, for implementing Single
Sign-On (SSO) 374
AWS Key Management Service (KMS) 184
AWS Lambda 173
AWS managed 34
AWS managed for job functions 34
AWS managed policies
AWS managed 34
AWS managed for job functions 34

AWS Management Console
URL 5
AWS organization
setting up 325-330
AWS organizations
designing 350, 351
exceptions OU, adding 359
OU, creating in Terraform 352-356
previously created OU, including
in Terraform 356, 357
SCP, attaching to OU with
Terraform 357, 358
AWS Secrets Manager
secrets, storing 166
AWS services
global infrastructure 27
types 26
AWS STS 43
AWS Transit Gateway 73, 74

backend block configuration
reference link 288

bimodal behavior 126

boto 11

Boto3
secrets, accessing from AWS

Lambda function 173

used, for rotating IAM credentials 44

Boto3 SDK, for Python 11
clients, versus resources 12
installing 11,12

bunker account for backups
exploring 245

Index

C

chaos engineering 262-264
chaos experiments 262, 263
building, with FIS 265-276
designing 264
FIS, using for 264
Classic Load Balancer (CLB) 106
ClickOps 62
client 12
Cloud Development Kit (CDK) 3, 107
reusable components, building 312-321
secrets, creating 167-169
CloudFormation 12, 13
IGW, creating 67-69
route table, creating 67-69
subnet association 67-69
template, deploying 14, 15
template, writing 13
used, for creating second VPC 62
using, to create EC2 instance 88-91
VPC and subnets, setting up 62-67
CloudWatch Agent
used, for monitoring custom
metrics 202-216
used, for sending log files 202-216
CloudWatch alert
creating, with notifications in SNS 219-222
CloudWatch Logs 197, 198
log group, creating 198-201
CloudWatch monitoring 194
command-line interface (CLI) 3
construct 20
layers 21
continuous integration/continuous
delivery (CI/CD) 280
control plane 28
cost alert, with budgets
creating 91-95

instances, shutting down
automatically 95-97
unattached EBS Volumes, identifying
with boto3 97-100
cross-stack referencing 65
cryptography
reference link 184
customer-managed keys (CMKs) 185

D

data encryption 184
data link layer 105
data plane 28
data transition
S3 Lifecycle polices, using
into S3 Glacier 239
default VPC 50
DeleteOnTermination 97
disaster recovery strategies 251-253
backup and restore 253, 254
multi-site active-active 258-260
pilot light strategy 256, 257
warm standby strategy 257, 258
disaster recovery strategy 248
metrics 248
RPO metrics 249
RTO metrics 250
Domain Name System (DNS) 254

E

EC2 instance
creating, with CloudFormation 88-91
EC2 instances
AWS Console, using to create 80-88
concepts 80
setting up 80

393

394

Index

Elastic Block Storage (EBS) 80
Elastic Compute Cloud (EC2) 79,103, 123
Elastic Container Service (ECS) 21
Elastic Load Balancer (ELB) 106
Elastic Load Balancing (ELB) 104, 123

environment, setting up 107

session layer 105
Elastic Network Interfaces (ENIs) 90
enumerate() function 317
environment

setting up 5-8
exceptions OU

adding 359

F

Fault Injection Simulator (FIS) 264

used, for building chaos experiment 265-276

Federal Information Processing
Standards (FIPS) 184

Firecracker 173

function-as-a-service (FaaS) 173

G

Gateway Load Balancer (GWLB) 107
General Purpose SSD 2 (gp2) 85
General Purpose SSD 3 (gp3) 85
GitHub account
AWS connection, creating 283-287
code repository, creating 281, 282
connecting, to AWS CodeBuild 280
global service 28
Google Cloud Platform (GCP) 3
Graviton 82

H

hardware security modules (HSMs) 184
HashiCorp Configuration
Language (HCL) 22

host-based routing 106
HTTPS traffic

handling, with ALB 110
hub-and-spoke architecture 74
Hypertext Transfer Protocol (HTTP) 106

IAM credentials
key detection script, creating 44-46
prerequisites 44
rotating, with Boto3 44

IAM group 30
creating 30
user, adding 31

IAM policy 31
AWS managed policies 34
AWS STS 43
creating, with AWS CLI 37, 38
IAM credentials, rotating with Boto3 44
IAM roles 40
identity-based policy 32
organizational SCPs 32
permission boundaries 32
requisite evaluating 35, 36
resource-based policy 32
rewriting 38, 39
structure 32, 33

IAM roles
creating, with Terraform 40-42

Index

IAM user 26

creating, with AWS CLI 28, 29
Identity and Access Management

(IAM) 5,26

authentication 26

authorization 26
inbound rules 61, 85
Infrastructure as Code (IaC) 3, 279, 301
Internet Gateway (IGW) 52, 308

creating 67-69

creating, in VPC 56-58
Internet Protocol (IP) 105
internet service provider (ISP) 247
intrinsic function 63
isolated subnets 51

J

JavaScript Object Notation (JSON) 9
jsii
URL 16

L

Lambda function
writing, to read previously
created secret 173-179
launch template 126
ASG, creating in AWS console 132-137
ASGs in Terraform, creating 138-144
creating 126
creating, in AWS console 127-131
scaling policies, exploring 137, 138
load balancing 103
need for 106, 107
log groups 197
creating, in CloudWatch 198-201

log management
significance 195-197
logs 193

M

managed permissions 361

mesh architecture 73

metrics 193

modules 304

multi-factor authentication (MFA) 5
multi-site active/active strategy 258-260

N

National Institute of Standards and
Technology (NIST) 184
network access control lists (NACLs) 61
network layer 105
Network Load Balancers (NLBs) 106
non-compliant resources
detecting, with AWS Config 340-342

(0

Open Systems Interconnection
(OSI) model 105
application layer 106
data link layer 105
network layer 105
physical layer 105
presentation layer 106
transport layer 105
Organizational Unit (OU) 325
Organizational Units (OUs) 350
creating, in Terraform 352-356
outbound rules 61, 85

395

396

Index

P

parameters 62
path-based routing 106
pay-as-you-go model 79
peering
creating, between two VPCs 70-73
VPCs, interconnecting via 69, 70
physical layer 105
pilot light strategy 256, 257
pipeline
setting up 383-388
Post-Event Summaries (PESs) 254
PostgreSQL database
creating, in AWS Console 147-156
presentation layer 106
private subnets 51
public subnet 52
public subnets 51

R

RDS-Cluster 269
RDS instance
deploying, with Terraform 159-163
regional service 28
Relational Database Service (RDS) 253
Reserved Instance (RI) 93
resource 12
Resource Access Manager (RAM)
cross-account sharing, for use cases 367, 368
organizational resource sharing,
enabling in RAM 361
resource sharing inside organizations,
enabling 362, 363
resources, sharing with Terraform 364-366

subnets, sharing in VPC via
Terraform 361, 362

used, for sharing resources within
organization 360, 361
resource share 361
reusable components 302-304
building, in CDK 312-321
building, in Terraform 304-312
Route 53 (R53) 111
route table
creating 58-61
RPO metric 249
RTO metric 250

S

$3 bucket

modifying, to use CMK 185-190
S3 Lifecycle polices

reference link 240

used, for data transition into S3 Glacier 239
S3 Storage classes 239-244

reference link 239
scaling policies

exploring 137, 138
secrets

creating, in CDK 167-169

creating, in Terraform 170-172

sources 166

storing, with AWS Secrets Manager 166
Security Groups (SGs) 62
Security Token Service (STS)

advantages 43
segments 105
Service Control

Policies (SCPs) 32, 324, 350

session layer 105
Simple Notification Service (SNS) 216-218
Simple Queue Service (SQS) 217

Index

Single Sign-On (SSO)
implementing, with AWS
Identity Center 374
Slack
SNS notifications, sending 222-224
snapshot 98, 157
software development kit (SDK) 3
state management 288
statement ID (Sid) 33
super asterisk 212

T

tag 95
target group 106
Terraform 22
ASGs, creating 138-144
backend, setting up 288
fundamental concepts 22
installing 22
OU, creating 352-356
previously created OU, including 356, 357
resources, creating 22-24
reusable components, building 304-312
secrets, creating 170-172
used, for attaching SCP to OU 357-359
used, for automated deployment 280
used, for creating IAM roles 40-42
used, for deploying RDS instance 159-163
used, for setting up AWS Identity
Center 375-383
terraform.tfstate 288
trace ID 215
Transit Gateway (TGW) 73
Transmission Control Protocol (TCP) 105
transport layer 105

U

User Datagram Protocol (UDP) 105

\')

Virtual Private Cloud (VPC) 50, 79
components 50-52
creating, with AWS console 52, 53
IGW, creating 56-58
interconnecting, via peering 69, 70
network access control lists 61, 62
peering, creating between two VPCs 70-73
route table, creating 58-61
subnets, creating 53-56
Transit Gateway 69, 70

VPC flow logs
enablement, verifying 74-77

W

warm standby strategy 257, 258
web application

building 372-374

pipeline, setting up 383-388
webhooks 223

y4

zonal service 28

397

www . packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?

Spend less time learning and more time coding with practical eBooks and Videos from over
4,000 industry professionals

Improve your learning with Skill Plans built especially for you
Get a free eBook or video every month
Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub . comand as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www . packtpub . com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://www.packtpub.com
http://packtpub.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

EXPERT INSIGHT

AWS for Solutions
Architects

&

Sy B Mo

Saurabh Shrivastava Meslanjali Srivastay
Alberto Artasanchez Imbiaz Sayed (pa Ck'l')

AWS for Solutions Architects — Second Edition
Saurabh Shrivastava, Neelanjali Srivastav, Alberto Artasanchez, Imtiaz Sayed

ISBN: 978-1-80323-895-1

o Optimize your Cloud Workload using the AWS Well-Architected Framework

o Learn methods to migrate your workload using the AWS Cloud Adoption Framework

o Apply cloud automation at various layers of application workload to increase efficiency

« Build a landing zone in AWS and hybrid cloud setups with deep networking techniques

o Select reference architectures for business scenarios, like data lakes, containers, and serverless apps

« Apply emerging technologies in your architecture, including AI/ML, IoT and blockchain

https://www.amazon.com/dp/180323895X

Other Books You May Enjoy 401

AWS Cloud

Projects

IVO PINTO | PEDRO SANTOS

AWS Cloud Projects
Ivo Pinto, Pedro Santos

ISBN: 978-1-83588-928-2

« Develop a professional CV website while learning AWS fundamentals

o Build a recipe-sharing application using AWS’s serverless toolkit

o Leverage AWS Al services to create a photo friendliness analyzer for professional profiles
« Implement a CI/CD pipeline to automate content translation across languages

o Develop an Al-powered Q&A chatbot using Amazon Lex and cutting-edge LLMs

« Build a business intelligence application to analyze website clickstream data and understand
user behavior with AWS

https://www.amazon.com/AWS-Cloud-Projects-Ivo-Pinto/dp/B0DGTDD2YB

402

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors . packtpub. comand
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts

Now you've finished AWS for System Administrators, Second Edition we'd love to hear your thoughts!
If you purchased the book from Amazon, please click here to go straight to the
Amazon review page for this book and share your feedback or leave a review on the site that
you purchased it from.

Your review is important to us and the tech community and will help us make sure were delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1835463665
https://packt.link/r/1835463665

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don't stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781835463666

2. Submit your proof of purchase

3. That’s it! We'll send your free PDF and other benefits to your email directly

403

 https://packt.link/free-ebook/9781835463666
 https://packt.link/free-ebook/9781835463666

	Cover
	FM
	Copyright
	Dedication
	Contributors
	Table of Contents
	Preface
	Part 1: AWS Services and Tools
	Chapter 1: Setting Up the AWS Environment
	Technical requirements
	Setting up the environment
	Installing the AWS CLI
	Understanding the structure of AWS CLI commands

	Introducing the Boto3 SDK for Python
	Installing Boto3
	The difference between clients and resources

	What is CloudFormation?
	Writing your first CloudFormation template
	Deploying the template

	Exploring the AWS CDK
	Installing the AWS CDK
	Writing and deploying your first CDK project
	What is a construct in the CDK?

	Introducing Terraform
	Installing Terraform
	Creating resources in Terraform

	Summary

	Chapter 2: Protecting Your AWS Account Using IAM
	Technical requirements
	What is AWS IAM?
	What are IAM users?
	Types of AWS services and its global infrastructure
	Creating a new IAM user using the AWS CLI
	What are ARNs?
	IAM groups

	Understanding IAM policies
	Structure of IAM policies
	Introduction to AWS managed policies
	IAM policy evaluation
	Creating an IAM policy using the AWS CLI
	Rewriting our policy as least privilege
	Introduction to IAM roles
	Creating an IAM role with Terraform
	Short introduction to AWS STS
	Rotating IAM credentials using Boto3
	Summary

	Part 2: Building Infrastructure
	Chapter 3: Creating a Data Center in the Cloud Using a VPC
	Technical requirements
	A VPC and its components
	Creating a VPC using the AWS console
	Creating subnets in our VPC
	Creating an IGW in our VPC
	Creating a route table
	Exploring network access control lists

	Creating a second VPC using CloudFormation
	Setting up the VPC and subnets
	Creating an IGW, route table, and subnet association

	Interconnecting VPCs via peering and Transit Gateway
	Creating a peering between two VPCs
	What is AWS Transit Gateway?

	Programmatically verifying that VPC flow logs are enabled
	Summary
	Join the CloudPro Newsletter with 44000+ Subscribers

	Chapter 4: Scalable Compute Capacity in the Cloud via EC2
	Technical requirements
	Setting up EC2 instances
	A few EC2 concepts
	Using the AWS Console to create an EC2 instance
	Using CloudFormation to create an EC2 instance

	Creating a cost alert using budgets
	Automatically shutting down instances
	Identifying unattached EBS Volumes with boto3

	Summary

	Part 3: Scalability and Elasticity of our Cloud Infrastructure
	Chapter 5: Increasing Application Fault Tolerance and Efficiency with Elastic Load Balancing
	Technical requirements
	Understanding Elastic Load Balancing
	What load balancer should I use?
	Setting up our environment
	Setting up the ALB

	Handling HTTPS traffic with our ALB
	Setting up a custom domain name for our ALB
	Requesting a new TLS certificate for our ALB
	Adding an HTTPS listener
	Deploying an NLB in front of an ALB

	Summary

	Chapter 6: Increasing Application Performance Using AWS Auto Scaling
	Technical requirements
	When should we use auto scaling?
	Creating a launch template
	Creating a launch template in the AWS console
	Creating an ASG in the AWS console
	Exploring scaling policies
	Creating ASGs in Terraform

	Summary

	Chapter 7: Scaling a Relational Database in the Cloud Using Amazon Relational Database Service (RDS)
	Technical requirements
	What is Amazon RDS?
	Creating a PostgreSQL database in the AWS Management Console
	Deleting a database in RDS
	Deploying an RDS instance with Terraform
	Summary
	Join the CloudPro Newsletter with 44000+ Subscribers

	Chapter 8: Managing Secrets and Encryption Keys with AWS Secrets Manager and KMS
	Technical requirements
	Storing secrets with AWS Secrets Manager
	What is AWS Secrets Manager?
	Creating secrets in the CDK
	Creating secrets in Terraform
	Accessing secrets from an AWS Lambda function using Boto3

	Integrating Amazon RDS with AWS Secrets Manager to rotate database credentials
	Handling encryption keys with AWS KMS
	What is KMS?
	Changing an S3 bucket to use a CMK

	Summary

	Part 4: Monitoring, Metrics, and the Backup Layer
	Chapter 9: Centralized Logging and Monitoring with Amazon CloudWatch
	Technical requirements
	An introduction to CloudWatch for metrics
	Why do we need log management?
	An introduction to CloudWatch for logs
	Creating a log group in CloudWatch
	Monitoring custom metrics and sending log files using CloudWatch Agent

	Introduction to SNS
	Creating a CloudWatch metric alert that pushes a notification to SNS
	Sending SNS notifications to Slack
	Summary

	Chapter 10: Centralizing Cloud Backup Solutions
	Technical requirements
	Backups in AWS
	Creating backups with AWS Backup
	Automating the creation of backups with Terraform and tags

	S3 life cycle policies to transition data into S3 Glacier
	S3 storage classes

	Exploring bunker accounts for backups
	Summary

	Chapter 11: Disaster Recovery Options with AWS
	Technical requirements
	Defining our disaster recovery strategy
	RPO and RTO – the key metrics for DR
	RPO
	RTO

	An introduction to disaster recovery strategies
	Backup and restore DR strategy
	Pilot Light
	Warm standby
	Multi-site active/active

	Summary
	Join the CloudPro Newsletter with 44000+ Subscribers

	Chapter 12: Testing the Resilience of Your Infrastructure and Architecture with AWS Fault Injection Service
	Technical requirements
	Introduction to chaos engineering and chaos experiments
	AWS FIS for chaos experiments

	Summary

	Part 5: Deployments at Scale
	Chapter 13: Deploying Infrastructure Using CI/CD Pipelines
	Technical requirements
	A short introduction to CI/CD
	Automated deployment with Terraform and AWS CodeBuild
	Connecting your GitHub account
	Setting up a Terraform backend
	Deploying your code

	Summary

	Chapter 14: Building Reusable Infrastructure-as-Code Components
	Technical requirements
	An introduction to reusable components
	Building reusable components in Terraform
	Building reusable components in CDK
	Summary

	Chapter 15: Ensuring Compliance Using AWS Config and SCPs
	Technical requirements
	An introduction to SCPs
	Setting up an AWS organization
	Using AWS Config to detect non-compliant resources
	Summary
	Join the CloudPro Newsletter with 44000+ Subscribers

	Chapter 16: Operating in a Multi-Account Environment
	Technical requirements
	Designing AWS organizations
	Creating an OU in Terraform
	Including a previously created OU in Terraform
	Attaching an SCP to an OU with Terraform
	Adding the exceptions OU

	Sharing resources within an organization using Resource Access Manager
	Enabling organizational resource sharing in RAM
	Sharing subnets in our VPC via Terraform
	Enabling resource sharing inside organizations
	Sharing resources with Terraform
	Cross-account sharing for use cases with small amounts of AWS accounts

	Summary

	Chapter 17: End-to-End Deployment of an Application
	Technical requirements
	What we will build in this chapter
	Implementing Single Sign-On (SSO) with AWS Identity Center
	Setting up the pipeline

	Summary
	Stay Sharp in Cloud and DevOps – Join 44,000+ Subscribers of CloudPro

	Index
	Other Books You May Enjoy

